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Parameterised Software

Software is often released with configurable parameters, as it is
rare for a system to be optimal for all situations.

Parameters allow a single, general version to be released—and
then tailored to its environment.

Unfortunately, tuning parameters can be hard—often needing
in-depth knowledge of the software as well as the deployment
domain. . .
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Parameter Tuning

Parameter tuning is therefore an ideal target for automation,
and research has primarily focused on:

Execution time, e.g. [6, 10, 11, 12].
Memory consumption, e.g. [10].
Occasionally functional attributes such as output precision,
e.g. [5].

More recently, research concerning energy efficiency has come
to the fore, e.g. [2, 5, 7, 9].
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OpenTripPlanner

We wish to apply SBSE to tune and specialise parameters of
Guava’s CacheBuilder class to reduce the energy
consumption of OpenTripPlanner [http://www.opentripplanner.org/].

OpenTripPlanner (OTP) is an open source platform for
multi-modal and multi-agency journey planning.

Essentially OTP reads mapping data (OpenStreetMap) and
“General Transit Feed Specification” (GTFS) data from public
transport systems, and allows users to find routes.

http://www.opentripplanner.org/
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CacheBuilder

Guava’s CacheBuilder class is used to create instances of
Guava’s Cache, which is:

A semi-persistent mapping from keys to values.
Cache entries are manually added using get(Object,
Callable) or put(Object, Object), and are stored in the
cache until either evicted or manually invalidated.

OTP uses a Cache to store previously accessed “tiles”—the
map requires processing to determine routes/stops/etc; once
an area has been processed it is stored for future re-use.
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Implementation Outline

In outline, the process is as follows:
Find declarations within the CacheBuilder class, and
identify valid values for each of these, e.g. ints: int
initialCapacity = ?, enums: Strength
keyStrength = Strength.{strong, weak, soft}.
Generate a template version of the CacheBuilder class
to allow the variation points to be easily replaced by the
respective element in a candidate solution.
Given an assignment, the parameter values are replaced
and the modified source file written to disk. The library is
compiled and evaluated as part of OTP in terms of its
energy consumption.
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Variation Points

For convenience of implementation, the search for parameters
and template-creation was performed manually using the API
documentation to determine valid substitutions.

Due to dependencies and mutual exclusions, there are 9
parameters to modify: 6 integers, and 3 binary/ternary values.

The range of substitution values differed across variation
points, e.g. initialCapacity: [0, 100000], concurrencyLevel: [1,
32], or keyStrength: [0, 1] (mapping to {strong, weak}).
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Measuring Energy Consumption: Existing methods

Hardware tools exist, such as the data provided by an
Uninterruptible Power Supply or electronic watt-meter. These
are useful for a coarse-grained overview. . . their precision and
accuracy is too low for comparing very similar algorithms.
Software alternatives such as:

JALEN [8]—targets Java; estimates power consumption as
a function of execution time, CPU utilisation, and clock
frequency (low precision as reliant on timing: experiments
must be repeated multiple times within a measurement).
Wattch [1]—cycle-level simulator, provides ability to
distinguish between very similar programs. . . requires a
parameterised model of CPU, and doesn’t support Java
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OPACITOR (1)

OPACITOR traces the execution of Java code, using a modified
version of OpenJDK. This JVM generates a histogram counting
the number of times each Java opcode was executed.

Uses a model of energy costs of each Java opcode created by
Hao et al. [4] in their eLens work to calculate the energy
consumption.

It provides ability to distinguish programs down to single
instruction. . . but accuracy depends on the model used!
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OPACITOR (2)

Most important in this work is comparative accuracy, e.g. a < b
is correct, rather than a = 3.78543J. . . this depends on the
variability of energy consumption by opcodes, particularly those
dependent on operands.

A further complication is the significant variability between
different runs of the exact same Java program: both Garbage
Collection and Just-in-Time compilation are non-deterministic,
which greatly affects execution time and power consumption.
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OPACITOR (3)

In OPACITOR, therefore, during evolution GC and JIT are both
disabled. This allows runs to be repeatable.

In final testing, all features are enabled to ensure final results
are valid on a standard JVM.

This leads to an important benefit of OPACITOR, compared to
timing or wall-power measurements—its determinism means
that it can be executed in parallel or concurrently with other
software.
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Experimentation

We used a GA to search the space of solutions, running this 5
times with different seeds. The results from different runs were
similar, although not exactly the same due to the minimal
difference between e.g. initialSize = 50 vs. 51.

An evaluation consisted of starting the OTP server (loading
TriMet data), requesting 25 randomly-selected routes from 100
available, and stopping the server. Final testing used 25 routes
not used during training.

Each fitness evaluation took over 2 minutes, so the ability to
parallelise these was important.



Introduction Implementation Measuring Energy Consumption Experimentation and Results Conclusions References

13/22

Results (1)

Measurement
technique

GA Original (J) OTP
OverheadJ J p e

OPACITOR 13596.94 13857.65 – – 10027.24
OPACITOR with

JIT and GC
807.69 888.82

<.001 1.00 652.98
σ1.57 σ1.75 σ1.27

JALEN
783.79 815.50

<.001 1.00 662.45
σ2.18 σ1.84 σ1.48

Table: Energy used by test program as measured by OPACITOR,
OPACITOR with JIT and GC enabled, and JALEN. Each measurement
shows the mean and standard deviation over 100 runs of OTP using two
versions of CacheBuilder—the GA results vs. original.
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Results (2)

Measurement
technique

GA Original

J J p e

OPACITOR 3569.70 3830.41 – –
OPACITOR with

JIT and GC
154.71 235.84

<.001 1.00
σ1.57 σ1.75

JALEN
121.34 153.05

<.001 1.00
σ2.18 σ1.84

Table: Energy used by test program as measured by OPACITOR,
OPACITOR with JIT and GC enabled, and JALEN. Each measurement
shows the mean and standard deviation over 100 runs of OTP using
two versions of CacheBuilder—the GA results vs. original.
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Conclusions (1)

We have demonstrated that optimising parameters using GAs
can reduce energy consumption—in this case by optimising a
library used by OpenTripPlanner.

We measured the energy consumption using OPACITOR, a tool
which traces the execution of a program and calculates the total
cost using a model of individual opcode costs.
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Conclusions (2)

Unsurprisingly, the parameters which had the largest effect
were initialCapacity and maximumSize—the former
affecting the initial memory allocation and in particular
subsequent re-hashing, and the latter changing the point at
which old tiles are removed from the Cache.

The default value for initialCapacity was 16, and we
found improvement using higher values—the best between 125
and 150.

The default for maximumSize was set by OTP as 50, and so
with this value (or when the GA chose a value too low) this
adds extra computation. Again, anything greater than 125–150
provided the best results.
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Conclusions (3)

The best solution found by the GA was able to perform the
route-finding using approximately 9% less energy (or c. 34%
when the OTP overhead is subtracted).

JALEN corroborated these results, although not as closely as in
previous work [3]. This is likely due to the difficulty in
terminating OTP at the correct time, i.e. after all computation,
but without wasted time. JALEN is also unaware of the
difference in energy costs of different instructions. . . even if they
take the exact same time (e.g. same number of clock cycles),
the energy consumption of instructions will differ.
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