
Search-based Refactoring:

Metrics are Not Enough

Chris Simons1, Jeremy Singer2, David White2

1 Department of Computer Science and Creative Technologies,

University of the West of England, Bristol, BS16 1QY, United Kingdom

chris.simons@uwe.ac.uk

2 School of Computing Science, University of the Glasgow, G12 8RZ, United Kingdom

{jeremy.singer,david.r.white}@glasgow.ac.uk

Symposium on Search-Based

Software Engineering, Bergamo, Italy.

5 – 7 September 2015

Agenda

• Motivation

• Role of structural metrics in search for refactoring

• Hypotheses

• Experimental Methodology

• Survey of industrial software development practitioners

• Results

• Quantitative and qualitative analysis

• Related Work

• Conclusions

2

3

Motivation

SBSE extensively applied to refactor object-oriented software.

Metrics quantify structural properties such as cohesion,

coupling, module dependencies, inheritance hierarchies etc.

Barros, M.0. and Farzat, F.A.: What Can a Big Program Teach Us about Optimization?

Proceedings of SSBSE 2013, LCNS 8084. Springer (2013)

O’Cinneide, M., Tratt, L., Harman, M., Counsell, S. and Moghadam, I.: Experimental Assessment

of Software Metrics using Automated Refactoring. Proceedings of the ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement. ACM (2012)

SBSE refactoring of Apache Ant project does not improve design

as assessed by an expert

When SBSE refactoring is conducted using a number of cohesion

metrics, there can be disagreement between metrics

4

Questions

Q: What’s the relationship between metrics and design quality?

Q: Qualitatively, how do software engineers make such judgements?

We try to answer these questions, by:

- placing ultimate judgement of software quality with industrial software engineers,

- measuring any correlation between metrics used in SBSE and human judgement,

- examining the articulated justifications for those judgements.

Signpost

• Motivation
• Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
• Survey of industrial software development practitioners

• Results
• Quantitative and qualitative analysis reported

• Related Work

• Conclusions

5

6

H0: There is no correlation between software metric values

and software engineer evaluation of quality for a given

software metric.

H1: There is a correlation between software metric values

and software engineer evaluation of quality for a given

software metric.

We formulate our hypotheses such that the null hypothesis

makes no assumption of an effect:

Signpost

• Motivation
• Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
• Survey of industrial software development

practitioners

• Results
• Quantitative and qualitative analysis reported

• Related Work

• Conclusions

7

8

Experimental Methodology

A. Survey Design

B. Questionnaire Design

C. Survey Process

Three components:

9

A. Survey Design

10

A. Survey Design - selection of Software Designs

Two problem domains to strengthen generality of findings

- Automated Teller Machine (ATM)

- Nautical Cruise Booking System

Bjork, R.C., ATM Simulation, http://www.math-cs.gordon.edu/courses/cs211/ATMExample/

Apperly, H., Simons, C.L. et al. Service- and Component-Based Development. Addison-Wesley (2003)

Five experienced software engineers produced class diagrams

for each problem domain – 10 diagrams in total – and metric

values calculated for each class diagram.

All designs are available at: www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough

Balance of meaningful design versus cognitive overload

11

A. Survey Design - selection of Design Qualities

Quality Model for Object-Oriented Design (QMOOD) relates six

design quality attributes to corresponding properties and metrics.

Attribute Definition

Reusability Reflects the presence of object-oriented design characteristics that allow

a design to be reapplied to a new problem without significant effort.

Flexibility Characteristics that allow the incorporation of changes in a design. The

ability of a design to be adapted to provide functionally related

capabilities.

Understandability The properties of a design that enable it to be easily learned and

comprehended. This directly relates to the complexity of the design

structure.

Bansiya, J. and Davis, C.G.: A Hierarchical Model for Object-Oriented Design Quality Assessment.

IEEE Transactions on Software Engineering. 28(1), 4-17 (2002)

To reduce cognitive load in survey, we focussed on

the most problem-domain independent i.e.

12

A. Survey Design - selection of Metrics

Q: What is the distribution of software metrics among the SBSE refactoring literature?

Search query of “software metrics” in SBSE Repository…

Zhang, Y.: SBSE Repository. http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

…yielded 57 papers. Excluding non-refactoring sources narrowed the list to 23.

118 different metrics used. Only 3 (LCOM, MQ, EVM) used

more than once, and 1 suite (QMOOD) used more than once.

From these, we selected the QMOOD metrics Design Size in Classes (DSC),

Direct Class Coupling (DCC) and Numbers of Methods (NOM).

Also selected:

- elegance metric Numbers Among Classes (NAC) (used by Barros & Farzat)

- Numbers of Attributes and Methods (NOAM) (to cater for attributes)

13

A. Survey Design – Target Population, Sample Frame

Association of C and C++ Users

www.accu.org

British Computer Society

www.bcs.org

Approx. 900 members via email list

Approx. 11,000 members via

LinkedIn Forum

14

B. Questionnaire Design

Designs presented at random to participants, one model per participant.

Likert Scale used to evaluate designs with seven levels:

“strongly disagree”, “disagree”, “somewhat disagree”, “neutral”,

“somewhat agree”, “agree” and “strongly agree”

https://en.wikipedia.org/wiki/Likert_scale

Informed consent from participants obtained. All survey data strictly

confidential and published information reported either as aggregated

data or anonymised.

Pretesting conducted with five experienced software engineers.

SurveyGismo used as survey platform.

Questionnaire available at: www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough

15

C. Survey Process

Survey open from 18 January to 28 February 2015.

Participants posted lively comments to the BCS LinkedIn Forum e.g.

“it’s difficult to form an impression of design qualities using a class

diagram in isolation of other development aspects e.g. dynamic

models of behaviour, requirements, test plan etc.”

One forum contributor remarked:

“it seems that your idea of what quality is and how to judge it is

not the same as many of us in the industry”

Signpost

• Motivation
• Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
• Survey of industrial software development practitioners

• Results

• Quantitative and qualitative analysis reported

• Related Work

• Conclusions

16

17

Anonymised data available

50 responses received

Histogram of number of year’s

experience of respondents

Respondents self-assessed

expertise in software

design and confidence

in their ratings

Quantitative Results

http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/

18

Scatter Plots and Correlation between Human Judgment of

Software Qualities and Software Metrics

19

Quality DSC DCC NOM NAC NOAM

Understandable -0.128 -0.271 -0.203 -0.0400 0.103

Reusable -0.0280 -0.158 -0.195 -0.200 0.0572

Flexible 0.0386 -0.0806 -0.0677 -0.0613 0.202

Quality DSC DCC NOM NAC NOAM

Understandable 0.375 0.0571 0.156 0.783 0.487

Reusable 0.847 0.272 0.174 0.163 0.693

Flexible 0.790 0.578 0.640 0.672 0.160

Spearman’s Rank Coefficients for the Correlation between

Metrics and Human Judgement (to 3 s.f.)

P-Values for a Two-Sided Test of the Spearman’s

Rank Correlation Coefficients (to 3 s.f.)

20

We asked the engineers to justify their judgments in prose.

We then coded their responses as per Grounded Theory.

Qualitative Results

Classifications for Rationale behind Judgment of “Understandable”

21

Classifications for Rationale behind Judgment of “Flexible”

22

Classifications for Rationale behind Judgment of “Reuseable”

23

We make the following observations:

A class diagram is not enough

The Problem Domain matters

Qualities have meaning only in a given context

Good design is intuitive

Our standard metrics play a minor part

Signpost

• Motivation
• Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
• Survey of industrial software development practitioners

• Results
• Quantitative and qualitative analysis reported

• Related Work

• Conclusions

24

25

26

27

28

29

30

31

32

33

34

Our Threats to Validity

Class models are small:

constrained by cognitive overload and screen space

Participant understanding of qualities:

we provided definitions and navigation to revisit

Bias of target population and sample frame:

(as with any survey)

targeted professional institutions and practitioners

Pilot survey could have been more extensive

Signpost

• Motivation
• Role of structural metrics in software refactoring

• Hypotheses

• Experimental Methodology
• Survey of industrial software development practitioners

• Results
• Quantitative and qualitative analysis reported

• Related Work

• Conclusions

35

36

Conclusions (1)

Refactoring metrics are not correlated

with human engineer judgement

Unable to refute the null hypothesis; thus unable to support

conjecture that SBSE refactoring tools relying solely on these metrics

will consistently propose useful refactored models to engineers.

37

Conclusions (2) – wider lessons

Simple metrics are not able to entirely capture essential

qualities of software design used by human engineers

Software is inextricably connected to a problem domain

We note recent advances in machine learning

and automatic programming to address such concerns…

…but without their inclusion,

human-in-the-loop automated refactoring systems

may be required for meaningful solutions.

38

Software Refactoring:

Metrics are Not Enough

questions?

@chrislsimons

chris.simons@uwe.ac.uk

@jsinger_compsci

jeremy.singer@glasgow.ac.uk

@davidwhitecs

david.r.white@glasgow.ac.uk

