Search-based Refactoring:
Metrics are Not Enough

Chris Simons*, Jeremy Singer?, David White’

1 Department of Computer Science and Creative Technologies,
University of the West of England, Bristol, BS16 1QY, United Kingdom

chris.simons@uwe.ac.uk

2 School of Computing Science, University of the Glasgow, G12 8RZ, United Kingdom

{jeremy.singer,david.r.white}@glasgow.ac.uk

ssb%

Symposium on Search-Based
Software Engineering, Bergamo, Italy.
5 —7 September 2015

Agenda

Motivation

e Role of structural metrics in search for refactoring

Hypotheses
Experimental Methodology

e Survey of industrial software development practitioners

Results

e Quantitative and qualitative analysis

Related Work
Conclusions

Motivation

SBSE extensively applied to refactor object-oriented software.
Metrics quantify structural properties such as cohesion,
coupling, module dependencies, inheritance hierarchies etc.

SBSE refactoring of Apache Ant project does not improve design
as assessed by an expert

When SBSE refactoring is conducted using a number of cohesion
metrics, there can be disagreement between metrics

Questions

Q: What’s the relationship between metrics and design quality?

Q: Qualitatively, how do software engineers make such judgements?

We try to answer these questions, by:

- placing ultimate judgement of software quality with industrial software engineers,
- measuring any correlation between metrics used in SBSE and human judgement,

- examining the articulated justifications for those judgements.

Signpost

 Hypotheses

We formulate our hypotheses such that the null hypothesis
makes no assumption of an effect:

H,: There is no correlation between software metric values
and software engineer evaluation of quality for a given
software metric.

H,: There is a correlation between software metric values
and software engineer evaluation of quality for a given
software metric.

Signpost

* Experimental Methodology

* Survey of industrial software development
practitioners

Experimental Methodology

Three components:

A. Survey Design

B. Questionnaire Design

C. Survey Process

WILEY

T S || Survey |
Methods Mo 0 i) Methodology

Robert M. Groves, Floyd J. Fowler, Jr., Mick P. Couper,
wes M, Lepkowski, Eleanor Singer, and Roger Tourangean |

A. Survey Design - selection of Software Designs
Balance of meaningful design versus cognitive overload

Two problem domains to strengthen generality of findings
- Automated Teller Machine (ATM)
- Nautical Cruise Booking System

Five experienced software engineers produced class diagrams
for each problem domain — 10 diagrams in total — and metric
values calculated for each class diagram.

All designs are available at: www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough

A. Survey Design - selection of Design Qualities

Quality Model for Object-Oriented Design (QMOQOD) relates six
design quality attributes to corresponding properties and metrics.

To reduce cognitive load in survey, we focussed on
the most problem-domain independent i.e.

bt |Defiton

Reusability Reflects the presence of object-oriented design characteristics that allow
a design to be reapplied to a new problem without significant effort.

Flexibility Characteristics that allow the incorporation of changes in a design. The
ability of a design to be adapted to provide functionally related
capabilities.

Understandability The properties of a design that enable it to be easily learned and
comprehended. This directly relates to the complexity of the design
structure.

11

A. Survey Design - selection of Metrics

Q: What is the distribution of software metrics among the SBSE refactoring literature?

Search query of “software metrics” in SBSE Repository...

...yielded 57 papers. Excluding non-refactoring sources narrowed the list to 23.

118 different metrics used. Only 3 (LCOM, MQ, EVM) used
more than once, and 1 suite (QMOOD) used more than once.

From these, we selected the QMOOD metrics Design Size in Classes (DSC),
Direct Class Coupling (DCC) and Numbers of Methods (NOM).

Also selected:
- elegance metric Numbers Among Classes (NAC) (used by Barros & Farzat)
- Numbers of Attributes and Methods (NOAM) (to cater for attributes)

12

A. Survey Design — Target Population, Sample Frame

Association of C and C++ Users British Computer Society
WWW.Accu.org www.bcs.org

Logn @& Home About us Contact us T International ¥
aCC U 3

ications Membership Business solutions Search
ACCU Menu ACCU - Professionalism in Programming Advertisement
Conferences Doyoum
il of A -
Mission, vision and values
Book Reviews v Functionality
Community vPrice
Membership ‘?Documentation
+ About
Contact us

What is ACCU?
Committee Members
ACCU Constitution Login

Username:

ACCU is an organisation for anyone interested in developing and improving programming skills Password:

ACCU welcomes everyone who is interested in any programming language. ACCU supports its members by hosting
mailing lists, running a yearly conference, publishing journals and erganising online study groups. And there's cur fine
collection of book re

Remember me

ualifications and Certification
Login QualiticationsiandiCertifications Our mission as BCS, The Chartered Institute for IT, is to enable the

ACCU is a non-profit run by from Join now and start participating » Create an account Membership information society. We promote wider social and economic progress
» Password Reminder through the of science and practice.
Brief background
r solutions
The C Users Group (UK) or CUG(UK), was formed in 1987 as an informal group for these who had an interest in the C ACCU Buttons We bring together industry, and to share

language and related topics such as operating systems, language compilers and other types of work usually done in C S— knowledge, promote new thinking, influence the development of computing
d them to your see:

1n 1993 the European C++ User Group (ECUG) merged with the C Users Group (UK) and the organisation continued as education, shape public policy and inform the public.
Association of C and C++ Users. accu

In the following years the interests of the members continued to grow Into other languages, design, process and related
subjects. In 2003 the acronym ACCU was adopted as the public name of the group removing the language specificity to — | s s N | Vision

Our vision is to be a world-class organisation for IT. Our 75,000 strong

Approx. 900 members via email list ::";:::::::W

employees. A leading IT qualification body, we offer a range of widely
recognised qualifications.

Approx. 11,000 members via
LinkedIn Forum

13

B. Questionnaire Design

Designs presented at random to participants, one model per participant.

Likert Scale used to evaluate designs with seven levels:

n «u n «u

“strongly disagree”, “disagree”, “somewhat disagree”, “neutral”,

n u

“somewhat agree”, “agree” and “strongly agree”

Informed consent from participants obtained. All survey data strictly
confidential and published information reported either as aggregated
data or anonymised.

Pretesting conducted with five experienced software engineers.

SurveyGismo used as survey platform.

Questionnaire available at: www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough

C. Survey Process

Survey open from 18 January to 28 February 2015.

Participants posted lively comments to the BCS LinkedIn Forum e.g.

“it’s difficult to form an impression of design qualities using a class
diagram in isolation of other development aspects e.g. dynamic
models of behaviour, requirements, test plan etc.”

One forum contributor remarked:

“it seems that your idea of what quality is and how to judge it is
not the same as many of us in the industry”

15

Signpost

e Results

e Quantitative and qualitative analysis reported

16

Quantitative Results

Anonymised data available

2 http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/
w —
S 50 responses received
(]
>
g - -
I
N Histogram of number of year’s
o experience of respondents

Expert | 10% 14% 76%
Respondents self-assessed
expertise in software '
design and confidence
in their ratings G | o S —
|
Percentage

Response Strongly Disagree Disagree Somewhat Disagree Neutral Somewhat Agree Agree Strongly Agree

o c -
[o o o of
o o o o o
o o° °c o
o o o o of
@ o of
T T T 1 o_
06 0L 0S 0¢
WYON
o <)
o o0ofo o
o ocoflo o
o o o o of
o o009 o <]
00 o0 (<]
T T T 2 T 2
§Z 02 S1 01
OWN
3] oo}
@® o oo~
o o oo or-
o @ o of
@® o oo~
o o or-
—— T
Oy S€ 0€ ST 02 Si
WON
9] oo
o oo w o~
o o o ofo or-
o oo of
o oo o @ o
o o of
— T
0€ 62 02 S 0L S
004
o o o
o 0 0of 0 0 OfF
o ©c 00/ O
co (<]
o o©o c o of
o o (<] ot
[e)
T 1T T T 11
9l 43 8 9

1 2 3 4 5 6 7

2 3 4 5 6 7

1

2 3 4 5 6 7

1

2 3 4 5 6 7 1 2 3 4 5 6 7

1

Understandable Understandable Understandable Understandable

Understandable

5 =
o o o =
o o o =
o o o o
o o o @ o
o o @ | o o o
—T— T
06 0L 0S (0.5
WYON
o
oo o
o o [o o
oofo of-
o o od o o
o o opo
oo o of
T T T T
§Z 02 S 01
OVN
o =
o o oof
@ 00 of
o o oof
o o o oof
oo @ o of-
o
oy G€ 0€ G 0Z GSI
WON
o o oo
o 000 of
o o @ of-
co @ of-
o ococo [o o o |
—r— 2%
o€ G2 02 S O S
000
5 n
o o o o =
o co0 ©
o q oo o
ccd ©0 © ©
0 00003 o
c_ o o o
T T T T T 1
9l (4 8 9
0sa

1 2 3 4 5 6 7

2 3 4 5 6 7

1

2 3 4 5 6 7

1

2 3 4 5 6 7 1 2 3 4 5 6 7

1

Reusable

Reusable

Reusable

Reusable

Reusable

o 5 [-
© o o o © —
o o o @ of
© o o © of
c @ o =
T T T T 1 o_ o
06 0L 0s 0g
WYON
oofo o}-
o c oo|o of-
o ool o of
o oo o of-
o (<] o of-
_ o_ [¢) _ [¢) _ o
§Z 02 S 01}
OVN
0 00 o}-
o @ oo oo
@® oo oo
o o oo oo
oo o oo of-
— T _0|
Oy G€ 0€ ST 0Z Si
WON
o 9] 9] o}-
© ooo oo
© ocoo o o o
© o o 0 o
o o o o of-
—r——T—T7
o€ SZ 02 Sk 0L S
00a
o o) -
o 000 ©o0 © —
© o©o00cQ ©O O Of
o cqQ o o of
© o o090 o —
oo [e) o}
T 1T 17 T 11
9l 4 8 9
0sa

Flexible

Flexible

Flexible

Flexible

Flexible

18

Scatter Plots and Correlation between Human Judgment of
Software Qualities and Software Metrics

Quaity | bsc | bcc | Now | WA | Noam

Understandable -0.128 -0.271 -0.203 -0.0400 0.103
Reusable -0.0280 -0.158 -0.195 -0.200 0.0572
Flexible 0.0386 -0.0806 -0.0677 -0.0613 0.202

Spearman’s Rank Coefficients for the Correlation between
Metrics and Human Judgement (to 3 s.f.)

Quaity | sc | bcc | Now | Nac | noam

Understandable 0.375 0.0571 0.156 0.783 0.487
Reusable 0.847 0.272 0.174 0.163 0.693
Flexible 0.790 0.578 0.640 0.672 0.160

P-Values for a Two-Sided Test of the Spearman’s
Rank Correlation Coefficients (to 3 s.f.)

Qualitative Results

We asked the engineers to justify their judgments in prose.
We then coded their responses as per Grounded Theory.

Coding Frequency
Needs something more (dynamics, context, reqts, rationale etc.)|22
Incorrect or unclear responsibility assignment 13

Clear traceability to problem domain 10

Clear breakdown of purpose 6

Clear element naming 5

Missing abstractions 4

No response or no explanation 3

Poor layout 1

Classifications for Rationale behind Judgment of “Understandable”

20

Coding Frequency
Parts of the design should be easy to modify 12
Problem specific 11

Needs something more (dynamics, context, reqts etc.)
Incorrect or missing abstractions

Class coupling

Incorrect / unclear responsibility assignment
Separation of concerns

Hard to test

Simplistic

No response / no clear explanation

8

o = N N Ot 0

Classifications for Rationale behind Judgment of “Flexible”

21

Coding

Frequency

Problem specific

Parts of the design are reusable, others not

Class coupling

Needs something more (dynamics, context, reqts etc.)
Incorrect abstractions

Lack of object-oriented design

Separation of concerns

OO languages

Simplistic

No response

24

(-
Qo

=== NN W Ot O

Classifications for Rationale behind Judgment of “Reuseable”

22

We make the following observations:
A class diagram is not enough
The Problem Domain matters
Qualities have meaning only in a given context
Good design is intuitive

Our standard metrics play a minor part

23

Signpost

e Related Work

24

Program Complexity Metrics and Programmer
Opinions

Bernhard Katzmarski, Rainer Koschke
Fachbereich Mathematik und Informatik
University of Bremen
Bremen, Germany
{bkatzm koschke} @tzi.de

Abstract—Various program complexity measures have been
proposed to assess maintainability. Only relatively few empirical
studies have been conducted to back up these assessments
through empirical evidence. Researchers have mostly conducted
controlled experiments or correlated metrics with indirect main-
tainability indicators such as defects or change frequency.

This paper uses a different approach. We investigate whether
metrics agree with complexity as perceived by programmers.
We show that, first, programmers’ opinions are quite similar
and, second, only few metrics and in only few cases reproduce
complexity rankings similar to human raters. Data-flow metrics
seem to better match the viewpoint of programmers than control-
flow metrics, but even they are only loosely correlated. Moreover
we show that a foolish metric has similar or sometimes even
better correlation than other evaluated metrics, which raises the
question how meaningful the other metrics really are.

In addition to these results, we introduce an approach and
associated statistical measures for such multi-rater investigations.
Our approach can be used as a model for similar studies.

Index Terms — control-flow metrics, data-flow metrics, pro-
gram complexity

yet the mean of all estimates was accurate to a fraction of one
percent. This anecdote has lead to the notion of wisdom of
crowds and crowd sourcing.

That is not to say that we claim the so-called wisdom of
crowds emerges also when it comes to assessing program
complexity. Rather we view questionnaires as a research
instrument complementary to other instruments. While others
have focused mostly on other research instruments, we would
like to explore whether and how questionnaires can be used.
Furthermore, subjective assessment by questionnaires is at
least useful to generate operational hypotheses, which can later
be assessed by controlled experiments.

Contributions. Our new contributions are two-fold. First,
we investigate the question whether control and data-flow
metrics can be used to assess program complexity as gathered
from developer opinions. Second, our research approach can
be used as a model for investigations based on questionnaires.
We discuss and show how methods and statistics from be-
havioral sciences mav be adaoted to program-understanding

25

two never correlate. The results suggest that DepDeg reflects
programmers’ opinions slightly better than CyclCompl.

It is interesting to see that the very simple data-flow
approximation NOES performs similarly to the other evaluated
data-flow metrics that are much more expensive to compute.
Likewise, the fact that the meaningless metric Foo has such a
high accordance questions the accordance of the other metrics.

V. THREATS TO VALIDITY

We have already noted that questionnaires are subjective.
This section discusses additional threats to validity.

We used convenience sampling to gather participants by
sending out e-mails to colleagues — the vast majority working
in academia. Many of them distributed the questionnaire
to their students. Consequently, most participants are from
academia. Professional progres might judge differently.

However, many of the participants had substantial program-
ming experience.

Although we collected a high number of ratings, only half
of them are consistent. This high degree of inconsistency
may partly arise from problems in the experimental design
and implementation. For instance, one participant complained
he did not find a way to go back and correct his false
rating. It may be the case that inconsistent ratings come from
these accidentally false ratings. Despite removing inconsistent
ratings from the study, we still had more than 200 ratings.

Our results are based on methods implemented in Java. Al-
though we excluded language features special to Java, it is not
quite clear how results apply to other programming languages.
Furthermore, methods were small (12-51 lines of code) to limit
the influence of size and we ignored interprocedural flows
and object-oriented design aspects, which may have a greater
impact on comprehension. That is, we evaluated only a limited

We used convenience sampling to gather participants by
sending out e-mails to colleagues — the vast majority working
in academia. Many of them distributed the questionnaire
to their students. Consequently, most participants are from
academia. Professional programmers might judge differently.

tation available, so we had to implement ourselves. We may
have misinterpreted details.
We did not specify any rating criteria, which gives more

C 100 yay 1 1 1 1 1

T T e TS CTE T e C AT I VT T TCS S T 70U PP 7 o= TUz

[11] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study of
how developers seek, relate, and collect relevant information during soft-
ware maintenance tasks,” IEEE Transactions on Software Engineering,
vol. 32, no. 12, pp. 971-987, Dec. 2006.

26

two never correlate. The results suggest that DepDeg reflects
programmers’ opinions slightly better than CyclCompl.

It is interesting to see that the very simple data-flow
approximation NOES performs similarly to the other evaluated
data-flow metrics that are much more expensive to compute.
Likewise, the fact that the meaningless metric Foo has such a
high accordance questions the accordance of the other metrics.

However, many of the participants had substantial program-
ming experience.

Although we collected a high number of ratings, only half
of them are consistent. This high degree of inconsistency
may partly arise from problems in the experimental design
and implementation. For instance, one participant complained
he did not find a way to go back and correct his false

rating. It may be the ¢ t inconsistent ratings come from

these accidentally false rau: ite removing inconsistent
We have already noted that questionnaires are subjective. ratings from the study, we still e than 200 ratings.

This section discusses additional threats to validity. Our results are based on meth \mented in Java. Al-

We used convenience sampling to gather participants by though we excluded language featur. Java, it is not
sending out e-mails to colleagues — the vast majority working quite clear how results apply to other ing languages.
in academia. Many of them distributed the questionnaire FEyrthermore, methods were small (12 >f code) to limit
to their students. Consequently, most participants are from the influence of size and we ignd® rocedural flows

V. THREATS TO VALIDITY

Although we collected a high number of ratings, only half
of them are consistent. This high degree of inconsistency
may partly arise from problems in the experimental design
and implementation. For instance, one participant complained
he did not find a way to go back and correct his false
rating. It may be the case that inconsistent ratings come from
these accidentally false ratings. Despite removing inconsistent
ratings from the study, we still had more than 200 ratings.

27

two never correlate. The results suggest that DepDeg reflects
programmers’ opinions slightly better than CyclCompl.

It is interesting to see that the very simple data-flow
approximation NOES performs similarly to the other evaluated
data-flow metrics that are much more expensive to compute.
Likewise, the fact that the meaningless metric Foo has such a
high accordance questions the accordance of the other metrics.

V. THREATS TO VALIDITY

We have already noted that questionnaires are subjective.
This section discusses additional threats to validity.

We used convenience sampling to gather participants by
sending out e-mails to colleagues — the vast majority working
in academia. Many of them distributed the questionnaire
to their students. Consequently, most participants are from
academia. Professional programmers might judge differently.

However, many of the participants had substantial program-
ming experience.

Although we collected a high number of ratings, only half
of them are consistent. This high degree of inconsistency
may partly arise from problems in the experimental design
and implementation. For instance, one participant complained
he did not find a way to go back and correct his false
rating. It may be the case that inconsistent ratings come from
these accidentally false ratings. Despite removing inconsistent
ratings from the study, we still had more than 200 ratings.

Our results are based on methods implemented in Java. Al-
though we excluded language features special to Java, it is not
quite clear how results apply to other programming languages.
Furthermore, methods werc % -51 lines of code) to limit
the influence of size and we ig interprocedural flows
and object-oriented design aspects, xnay have a greater
impact on comprehension. That is, we only a limited

Our results are based on methods implemented in Java. Al-
though we excluded language features special to Java, it is not
quite clear how results apply to other programming languages.
Furthermore, methods were small (12-51 lines of code) to limit
the influence of size and we ignored interprocedural flows
and object-oriented design aspects, which may have a greater
impact on comprehension. That is, we evaluated only a limited

28

Experimental Assessment of Software Metrics Using
Automated Refactoring

Mel O Cinnéide
School of Computer Science
and Informatics
University College Dublin

mel.ocinneide @ucd.ie

Steve Counsell
Dept. of Information Systems
and Computing
Brunel University

steve.counsell@brunel.ac.uk

ABSTRACT

A large number of software metrics have been proposed in
the literature, but there is little understanding of how these
metrics relate to one another. We propose a novel experi-
mental technique, based on search-based refactoring, to as-
sess software metrics and to explore relationships between
them. Our goal is not to improve the program bemg refac-
tored, but to assess the software metrics that

Laurence Tratt
Dept. of Informatics
King’s College London

laurie @tratt.net

Mark Harman
Dept. of Computer Science
University College London

mark.harman@ucl.ac.uk

Iman Hemati Moghadam
School of Computer Science
and Informatics
University College Dublin
Iman.Hemati- _
Moghadam @ ucdconnect.ie

1. INTRODUCTION

Metrics are used both implicitly and explicitly to measure
and assess software [43], but it remains difficult to know
how to assess the metrics themselves. Previous work in the
metrics literature have suggested formal axiomatic analysis
[45], though this approach is not without problems and limi-
tations [18] and can only assess theoretical metric properties
and not their practical aspects.

In this paper we introduce a novel experimental approach
to the assessment of metrics, based on automated search-

based refactoring. It is striking that many metrics purport

them Our goal is not to improve the program being refac-
tored, but to assess the software metrics that guide the auto-
mated refactoring through repeated refactoring experiments.

D.2.8 [Software Engineering|: Metrics— Complezity mea-
sures; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement— Restructuring, reverse engineer-
ing, and reengineering

Can metrics that measure the same property disagree, and
how strongly can they disagree? These questions are impor-
tant, because we cannot rely on a suite of metrics to assess
properties of software if we can neither determine the ex-
tent. to which thev aoree nor have anv wav to determine

29

Experimental Assessment of Software Metrics Using
Automated Refactoring

We apply our approach to five popular cohesion metrics
using eight real-world Java systems, involving 300,000 lines
of code and over 3,000 refactorings. Our results demonstrate
that cohesion metrics disagree with each other in 55% of
cases, and show how our approach can be used to reveal
novel and surprising insights into the software metrics under
investigation.

metrics relate to one another. We py
mental technique, based on search-b
sess software metrics and to explo
them. Our goal is not to improve tne
tored, but to assess the software metrics
mated refactoring through repeated refac

We apply our approach to five popular
using eight real-world Java systems, involving'
of code and over 3,000 refactorings. Our results demo = crate
that cohesion metrics disagree with each other in 55% of
cases, and show how our approach can be used to reveal
novel and surprising insights into the software metrics under
investigation.

ovel experi-
actoring, to as-
1ships between
m being refac-
uide the auto-

Categories and Subject Descriptors

D.2.8 [Software Engineering|: Metrics— Complezity mea-
sures; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement— Restructuring, reverse engineer-
ing, and reengineering

how to assess the metrics themselves. Previous work in the
metrics literature have suggested formal axiomatic analysis
[45], though this approach is not without problems and limi-
tations [18] and can only assess theoretical metric properties
and not their practical aspects.

In this paper we introduce a novel experimental approach
to the assessment of metrics, based on automated search-
based refactoring. It is striking that many metrics purport
to measure the same aspect of software quality, yet we have
no way of checking these claims. For example, many metrics
have been introduced in the literature that aim to measure
software cohesion [9, 11, 26, 33, 20]. If these metrics were
measuring the same property, then they ought to produce
similar results. This poses some important but uncomfort-
able questions: how do the results of metrics that purport to
measure the same software quality compare to one another?
Can metrics that measure the same property disagree, and
how strongly can they disagree? These questions are impor-
tant, because we cannot rely on a suite of metrics to assess
properties of software if we can neither determine the ex-
tent. to which thev aoree nor have anv wav to determine

30

The Journal of Systems and Software 107 (2015) 1-14

Contents lists available at ScienceDirect

et of
ms and Softwuare

i

journal homepage: www.elsevier.com/locate/jss (ol ” } ‘ I ‘ ‘\ H

The Journal of Systems and Software

AART 3% 22 8° mtal tmarractirrati A A 41 2 2% 2% = 4= . - - 3 2 725 72 2% —_—

An experimental investigation on the innate relationship between @Cwssmﬂ(
quality and refactoring

Gabriele Bavota®* Andrea De Lucia® Massimiliano Di Penta€, Rocco Oliveto9, Fabio PalombaP®

2 Free University of Bozen-Bolzano, Bolzano, Italy
b University of Salerno, Fisciano (SA), Italy

€ University of Sannio, Benevento, Italy

d University of Molise, Pesche (IS), Italy

ARTICLE INFO ABSTRACT

Ar ﬂ'd_e history:) Previous studies have investigated the reasons behind refactoring operations performed by developers, and
Received 8 April 2015 proposed methods and tools to recommend refactorings based on quality metric profiles, or on the presence
:evnsed:ll\ga& 20;;)]5 of poor design and implementation choices, i.e., code smells. Nevertheless, the existing literature lacks obser-
g o vations about the relations between metrics/code smells and refactoring activities performed by developers.

Available online 21 May 2015 i . . h - : i
In other words, the characteristics of code components increasing/decreasing their chances of being object

Keywords: of refactoring operations are still unknown. This paper aims at bridging this gap. Specifically, we mined the
Refactoring evolution history of three Java open source projects to investigate whether refactoring activities occur on
Code smells code components for which certain indicators—such as quality metrics or the presence of smells as detected
Empirical study by tools—suggest there might be need for refactoring operations. Results indicate that, more often than not,

quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are
generally focused on code components for which quality metrics do not suggest there might be need for
refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code
smells. However, only 7% of the performed operations actually remove the code smells from the affected
class.

© 2015 Elsevier Inc. All rights reserved.

31

Contents lists available at

The results achieved can be summarized as follows:

. More often than not, quality metrics do not show a clear relation-
ship with refactoring. In other words quality metrics might sug-
gest classes as good candidates to be refactored that are generally
not involved in developers’ refactoring operations.

. Among the 12,922 refactoring operations analyzed, 5425 are per-
formed by developers on code smells (42%). However, of these
5425 only 933 actually remove the code smell from the affected
class (7% of total operations) and 895 are attributable to only four
code smells (i.e., Blob, Long Method, Spaghetti Code, and Feature
Envy). Thus, not all code smells are likely to trigger refactoring
activities.

quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are
generally focused on code components for which quality metrics do not suggest there might be need for

refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code
smells. However, only 7% of the performed operations actually remove the code smells from the affected
class.

© 2015 Elsevier Inc. All rights reserved.

32

Contents lists available at

In summary, such results suggest that (i) more often than not
refactoring actions are not a direct consequence of worrisome met-
ric profiles or of the presence of code smells, but rather driven by a
general need for improving maintainability, and (ii) refactorings are
mainly attributable to a subset of known smells. For all these reasons,
the refactoring recommendation tools should not only base their sug-
gestions on code characteristics, but they should consider the devel-
oper’s point-of-view in order to propose meaningful suggestions of

classes to be refactored.

proposed methods and tools to recommend refactorings based on quality metric profiles, or on the presence

) g "‘""1"”1 . of poor design and implementation choices, i.e., code smells. Nevertheless, the existing literature lacks obser-
Accepted 12 May 2015 . ” P R S e . :
\L-l le online 21 May 2015 vations about the relations between metrics/code smells and refactoring activities performed by developers.
iconn > & May 2 < - &

In other words, the characteristics of code components increasing/decreasing their chances of being object
of refactoring operations are still unknown. This paper aims at bridging this gap. Specifically, we mined the

Refactoring evolution history of three Java open source projects to investigate whether refactoring activities occur on
Code smells code components for which certain indicators—such as quality metrics or the presence of smells as detected
Empirical study by tools—suggest there might be need for refactoring operations. Results indicate that, more often than not,

quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are
generally focused on code components for which quality metrics do not suggest there might be need for
refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code
smells. However, only 7% of the performed operations actually remove the code smells from the affected

class.

2015 Elsevier Inc. All rights reserved.

33

Our Threats to Validity

Class models are small:
constrained by cognitive overload and screen space

Participant understanding of qualities:
we provided definitions and navigation to revisit

Bias of target population and sample frame:
(as with any survey)
targeted professional institutions and practitioners

Pilot survey could have been more extensive

34

Signpost

 Conclusions

Conclusions (1)

Refactoring metrics are not correlated
with human engineer judgement

Unable to refute the null hypothesis; thus unable to support
conjecture that SBSE refactoring tools relying solely on these metrics
will consistently propose useful refactored models to engineers.

36

Conclusions (2) — wider lessons

Simple metrics are not able to entirely capture essential
gualities of software design used by human engineers

Software is inextricably connected to a problem domain

We note recent advances in machine learning
and automatic programming to address such concerns...

...but without their inclusion,
human-in-the-loop automated refactoring systems
may be required for meaningful solutions.

37

Software Refactoring:
Metrics are Not Enough

guestions?

Qchrislsimons
chris.simons@uwe.ac.uk

@jsinger_compsci
jeremy.singer@glasgow.ac.uk

L)
ddavidwhitecs SSb%
david.r.white@glasgow.ac.uk

38

