Optimizing Software Product Line Architectures with OPLA-Tool

Édipo Luis Féderle¹, Thiago do Nascimento Ferreira¹, Thelma Elita Colanzi², Silvia Regina Vergilio¹

¹DInf - Federal University of Paraná, Curitiba, Brazil

²DIN - State University of Maringá, Maringá, Brazil

edipofederle@gmail.com, {tnferreira, silvia}@inf.ufpr.br, thelma@din.uem.br

Introduction

Introduction

- The Product Line Architecture (PLA) is an important artifact that contains all the commonalities and variabilities of a Software Product Line (SPL).
- Colanzi et al. [2014] introduced MOA4PLA, a Multi-objective
 Optimization Approach for PLA Design where a set of PLA
 alternatives is produced, representing the best trade-off among
 objectives related to cohesion, coupling, and features
 modularization;
- A supporting tool is fundamental: practical use of MOA4PLA and to reduce efforts.

Introduction

Motivation

Tools found in the literature such as Darwin Tool and
 Dearthoir Tool need adaptation to support MOA4PLA application and do not consider specific PLA characteristics.

Goals:

This work describes OPLA-Tool (Optimization for PLA Tool)
 and presents an empirical study conducted in order to evaluate its usefulness by analysing the obtained solutions;

- OPLA-Tool implements the MOA4PLA process;
- Modules:

- **OPLA-GUI** offers a graphical interface that allows the architect to select the input PLA, the algorithm parameters and operators;
- OPLA-Encoding receives as input a class diagram and creates to the representation used by the algorithm;
- OPLA-Decoding converts the representation used by the algorithm to a class diagram;
- OPLA-Core implements the Multi-Objective Algorithms such as NSGA-II and PAES;
- OPLA-Patterns and OPLA-ArchStyles implement search operators related, respectively to, design pattern application and use of architectural styles.

Execution Configurations Tab

Empirical Study

Empirical Study

- Goal:
 - To evaluate whether OPLA-Tool is useful to support the automated MOA4PLA application in PLA design optimization;
- Algorithms:
 - NSGA-II and PAES;
- Fitness Functions:
 - CM (Indicator about cohesion, coupling and size)
 - FM (Feature Modularization)
 - Ext (Extensibility degree of SPL in terms of the PLA abstraction)
- Used PLAs:
 - Arcade Game Maker (AGM);
 - Mobile Media (MM);
 - Electronics Tickets for Urban Transport (BET).

Empirical Study

- Parameters:
 - Evaluations: 30,000;
 - Population size: 100;
 - File (PAES): 100;
 - Mutation rate: 90%;
 - o Runs: 30.
- PF_{known}: obtained from the found solutions of all runs of an algorithm, by eliminating duplicate and dominated ones.

Table 1. Number of solutions and hypervolume

PLA	PF_k		hypervolume		statistical test	
	NSGA-II	PAES	NSGA-II	PAES	p-value	difference?
AGM	11	20	0.00477 ± 0.00167	0.00308 ± 0.00209	0.06788	no
\overline{MM}	6	7	0.00347 ± 0.00132	0.00642 ± 0.00221	0.00348	yes
\mathbf{BET}	18	23	0.00652 ± 08.0 E-4	0.00813 ± 3.6 E-4	4.3204E-8	yes

- For AGM there is no statistical difference
- PAES is the best for MM and BET in terms of hypervolume.

PLA AGM

PLA MM

Generated Alternative PLA

Conclusion and Future Work

Conclusion

- This paper described OPLA-Tool for PLA optimization;
- Three PLAs and the algorithms NSGA-II and PAES were used;
- PAES presented the best hypervolume values for two PLAs, with statistical difference, and a greater number of solutions in most cases;
- Future work includes improvements in visualization of the solutions and implementation of new algorithms and objectives;
- More informations at:
 - http://www.inf.ufpr.br/gres/opla-tool/

Thanks!

http://www.inf.ufpr.br/gres