

State University of Ceará - Brazil

Interactive Software Release Planning with Preferences Base

Altino Dantas, Italo Yeltsin, Allysson Allex Araújo and Jerffeson Souza

Presentation agenda

- Introduction
- Proposed approach
 - Release planning model
 - Model of user preferences
 - Interactive formulation
- Preliminary empirical study
- Conclusions

Introduction

Introduction

- Release planning is a difficult problem;
- Various aspects, such as the customers needs and specific constraints;
- The current SBSE approaches to software release planning fail to effectively consider the user preferences;
- Interactive Optimization can be applied when human expertise is relevant to processo of search.

Main idea

is to incorporate the decision maker in the optimization process, allowing a fusion of his preferences and the objective aspects related to the release planning problem.

Proposed approach

Release Planning Model

Requirements
$$R = \{r_1, r_2, r_3 \dots r_N\}$$

- Each requirement r_i has a risk $risk_i$
- Each requirement r_i has an implementation cost $cost_i$

Releases
$$K = \{k_1, k_2, k_3 ... k_p\}$$

• Each release k_q has a budget s_q

Clients
$$C = \{c_1, c_2, c_3 ... c_M\}$$

- Each client c_j has a degree of importance w_j
- ullet Each client $oldsymbol{c}_{j}$ assigns an importance value to all requirement $oldsymbol{r}_{i}$

Model of user preferences

Preference assertions are defined by prepositional predicates

example

Representation: $positioning_in(r_i, k_q)$.

Parameters: Requirement r_i and a release $k_q \neq 0$.

Basic interpretation: One requirement should be placed in a certain release.

Formal interpretation: positioning_in(r_i , k_q) is satisfied, iff, $x_i = k_q$.

Model of user preferences

- 1. coupling_joint
- 2. coupling_disjoint
- 3. positioning_precedes
- 4. positioning_follows
- 5. positioning_after
- 6. positioning_before
- 7. positioning_in

Preferences Base Set
$$T = \{t_1, t_2, t_3 \dots t_Z\}$$

- Where t_i = < Preference Assertion, $L \in \{1,2,3...,10\}$ >
- ullet L is the importance level of the preference $oldsymbol{t_i}$

Interactive Formulation

When there aren't user preferences

$$Fitness(S) = \begin{cases} score(S), & if \ Z = 0 \\ \frac{score(S)}{penalty(S)} & otherwise \end{cases}$$

When there are user preferences

Interactive Formulation

Aspects of releases planning

$$score(S) = \sum_{i=1}^{N} y_i \times \underbrace{(value_i \times (P - x_i + 1) - risk_i \times x_i)}$$

Aspects introduced by interactions

$$penalty(S) = 1 + \mu \times \left(\frac{\sum_{i=1}^{Z} L_i \times violation(S, T_i)}{\sum_{i=1}^{Z} L_i}\right)$$

Interactive Formulation

$$Fitness(S) = \begin{cases} score(S), & if Z = 0\\ \frac{score(S)}{penalty(S)} & otherwise \end{cases}$$

maximize
$$Fitness(S)$$
,
subject to $\sum_{i=1}^{n} cost_i \times f_{i,q} \leq s_q, \forall q \in \{1, 2, ..., P\}$

Preliminary empirical study

Research Question

How effective is the approach in finding solutions which satisfy a high number of important preferences?

Settings and execution

- Two datasets based on real data;
- A set of random preferences for each dataset;
- An Interactive Genetic Algorithm (*a priori* interaction);
- 30 executions of each μ variation.

http://goes.uece.br/altinodantas/pb4isrp/en/

Results and analysis

Results (average and standard deviation) of *Satisfied Preferences* (SP), *Satisfaction Level* (SL) and *Score* with μ variation for each instance.

	dataget 1			dataget 0			
μ	dataset-1			dataset-2			
ρ.	SP	SL	Score	SP	SL	Score	
0	0.40 ± 0.03	$0.40{\pm}0.02$	25074.8 ± 58.33	0.37 ± 0.05	$0.36 {\pm} 0.05$	38561.3 ± 154.8	
0.1	0.54 ± 0.01	▲ 0.57±0.02 ▲	24889.8±80.55 ▼	0.58 ± 0.03	▲ 0.58±0.04	▲ 38359.9±168.4 ▼	
0.2	0.62 ± 0.02	▲ 0.66±0.02 ▲	24591.2±104.23 ▼	0.64 ± 0.04	▲ 0.66±0.04	▲ 37871.7±425.9 ▼	
0.3	0.65 ± 0.02	▲ 0.71±0.02 ▲	24312.2±152.30 ▼	0.71 ± 0.05	▲ 0.73±0.05	▲ 37218.1±583.9 ▼	
0.4	0.74 ± 0.02	▲ 0.77±0.03 ▲	23862.6±292.98 ▼	0.73 ± 0.04	▲ 0.76±0.05	▲ 36954.5±624.9 ▼	
0.5	0.75±0.03	▲ 0.80±0.02 ▲	23568.0±270.29 ▼	0.77 ± 0.05	∆ 0.81±0.05 <i>i</i>	∆ 36332.8±646.7 ∇	
0.6	0.77±0.02	▲ 0.83±0.02 ▲	23173.3±288.83 ▼	0.80 ± 0.03	▲ 0.85±0.05	▲ 35774.0±873.3 ▼	
0.7	0.80 ± 0.03	△ 0.86±0.02 △	22867.4±315.07 ∇	0.83 ± 0.04	∆ 0.88±0.05 Å	∆ 35211.4±999.6 ∇	
0.8	0.81±0.02	△ 0.87±0.01 ▲	22804.4±287.04 ▼	0.86 ± 0.05	▲ 0.91±0.04	▲ 34630.7±902.4 ▼	
0.9	0.82 ± 0.02	▲ 0.87±0.01 △	22731.9±315.73 ∇	0.86 ± 0.04	△ 0.93±0.03 Å	∆ 34459.7±802.9 ∇	
1	0.83 ± 0.02	△ 0.88±0.01 △	22494.3±477.97 ∇	0.88 ± 0.04	△ 0.94±0.04 Å	∆ 34052.5±674.0 ∇	
			Score			Score	
	43%	48%		51%	58%		
			10.3%			11.7%	
	SP	SL		SP	SL		

Conclusions

and future works

Conclusions

- The approach is able to satisfy almost of all user preferences;
- Prioritizing the most important ones, with little loss of score.

Future works

- Mechanism to identify logical conflicts between user preferences;
- Interactive meta-heuristics;
- Consider interdependencies between requirements.

Thanks!

Optimization in Software Engineering Group goes.uece.br