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ABSTRACT

Test case prionittzation technigues schedule kest cases for re-
eression iesting (0 an order thar incrcases theie sbiilty to meet
some performance goal. One performunce goal, race of fnelt
desection, measarcs how quickly faulis are detectod witkin
the teating process. In previoes work we provided a metnic,
APFD, for meassring rate of fauk detection, and techiriques.
for prionitizing lest cases (o ingrove APFD, and repocted
Ihe results of experiments skmg toss iechaiques. This mel-
fic and these techniques, bowever, applicd only 1o cases o
which st costs and foult severity are aniform. [n this pa-
pez, we prescat  new metric for ssesting the rato of St
dewction of priontzed test cases, that Ncorporaies vanymg
test case and fault coss, We prescat the results of o cise
m-llmlﬁ:wuumumm mnum

that [
test case prion ; we discuss how coukd
0 about answering these questions.

Keywords
et case prioriGzation, regression sestisg. lest cost, faull
severity, rate of (el detection

1 INTRODUCTION

Software engancers ofion save e keat sunes they develop ©
that they can resse those test suites laer dunng regression
testing. Reusing all of the st cases in @ fest suite, howeves,
cam be expensive: for exarnple, one of our industrial cotleb-
oestors repoets that for one of its products of sboat 20,000

SRS P PR T A A ORI S SO O

@ posible, crercises featuees i onder of frequency of use,
cesehects 10 desect faulte.

Ome potential goal of sest case priortizasen is 1o incresse &
tesd suine's e of faulr desection — thal is, how quickly that
Ao swite detecss (awds dueing the lesting process. An in-
creaned rae of fauk detection during testing peovides earher
feedback on e system under test, allowing debugging 10
begin cartier, and supporting faster strategic decisions about
rekease schedudes. Further. an ineproved rale of ok &Er
tioa can v

ahoet, 15t cases tat offer the grearess fanlt detecmon ability
in e available testing time will have been execuiod.

[ prevsous work (2, 1] we provided & metric, APFD, which
mensures the average cummulalive perceatage of faolts de-
tocted over the cowse of excculing e 1Es Cases In a et
Suite in n givon onder, We showed bow the APFD metric con
be used w0 quantify and compase the mtes of fxalt dessction
of test suiles. We presented several sechmiques for proatiz-
ulmwm:mmmumcm
124 their Our results in-
dicaied tat several of the techoiques <an inprove APED,
ond that this mprovemont can oocur even for the least %0~
phisticated (and least expeasive) tochnigues.
Akhough sucoessful i application o the class of problems
for which they were deagned, the APFD meiric and sech-
niques reled on the asumpion that lest costs and faud
severities are uniform. o peactice. however, test costs and
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Search Algorithms for
Regression Test Case Prioritization
Zheng Li, Mark Harman, and Robert M. Hierons

Abstraci—fegression Lesiing is an expensive, bul impariant, process. Unforiunaiely, ihere may be insufficient resources to allow for
the reexecution of all test cases during regression testing. In this SNuation, test case priariization techniques aim 1o imgrove the
effectivensss of regression testing by oroenng the test cases so hat the most benefical are executed first. Previous work on
regression test case priontization has focused on Greedy Algoriihms. However, It i known that these slgorithms may produce
subopiimal results because they may construct results that denate only local minima within the search space. By contrast,
metaheuristic and evolutionary search algorithms aim to avold such problems. This peper presents results from en empirical study of

search slgorthms 1o six programs, ranging from 574 1o 11,148 lines

of the most

multimodal nature of the landscape.

Index Te

test case

of code for three cholces of fitness metric. The paper addresses the problems of choloe of filness metric, characterization of
landscape modality, technigue o apply. The empirical resulis replicale previous resulls
‘concaming Greedy Algarithms. They shed light on the nature of Me regression testing search space, Indicating thal & is multmodal.
The results also show that Genetic Algorithms perform well, alinough Greedy approsches are surprisingly eflective, given the

regression testing.

1 INTRODUCTION

EGRESSION testing is a frequently applied but expensive
maintenance process that aims to (rejverify modified
software. Many approaches for improving the regression
testing processes have been investigated. Test case prioritiza-
tion [17], [18], [22] is one of these approaches, which orders
test cases so thatthe test cases with highest priority, according
to some criterion (a “fitness metric”), are executed first.
Rothermel et al. [15] define the test case prioritization
problem and describe several issues relevant to its solution.

The test case prioritization problem is defined (by Rothermel

et al) as follows:

The Test Case Prioritization Problem. Given: T, a fest suite;
PT, the set of permutations of T f, a function from PT to the
real mumbers.
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Here, T represents the set of all possible prioritizations
(orderings) of T and f is a function that, applied to any such
ordering, yields an award value for that ordering.

Test case prioritization can address a wide variety of
objectives [18]. For example, concerning coverage alone,
testers might wish to schedule test cases in order to achieve
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code coverage at the fastest rate possible in the initial phase
of regression testing to reach 100 percent coverage soonest
or to ensure that the maximum possible coverage is
achieved by some predetermined cut-off point. Of course,
the ideal order would reveal faults soonest, but this cannot be
determined in advance, so coverage often has to serve as the
most readily available surrogate. In the Microsoft Developer
Network (MSDN) library, the achievement of adequate
coverage without wasting time is a primary consideration
when conducting regression tests [13]. Furthermore, several
testing standards require branch adequate coverage, making
the speedy achievement of coverage an important aspect of
the regression testing process.

In previous work, many techniques for regression test
case pnuﬂhzatmﬂ have been described. Most of the

i were code-based, relying on informa-

tion le]atmg test cases to coverage of code elements. In [l
[17], [18], Rothermel et al. investigated several prioritizing
techniques, such as total statement (or branch) coverage
pricritization and additional statement {or branch) coverage
prioritization, that can improve the rate of fault detection. In
[22], Wong et al. prioritized test cases according to the
criterion of “increasing cost per additional coverage” In
[20], Srivastava and Thiagarajan studied a prioritization
technique that was based on the changes that have been
made to the program and focused on the objective function
of “impacted block coverage.” Other noncoverage based
techniques in the literature include fault-exposing-potential
(FEF) prioritization [18], history-based test prioritization
[11], and the incorporation of varying test costs and fault
severities into test case pnnm:lzalmn [5]. [&].

Greedy Algorithms have been
case Greedy Al
test cases to an initially empty sequence. The choice of
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or to ensure that the maximum possible coverage is
achieved by some predetermined cut-off point. Of course,
the ideal order would reveal faults soonest, but this cannot be
determined in advance, so coverage often has to serve as the
most readily available surrogate. In the Microsoft Developer
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[20], Srivastava and Thiagarajan studied a prioritization
technique that was based on the changes that have been
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Here, T represents the set of all possible prioritizations
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objectives [18]. For example, concerning coverage alone,
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code coverage at the fastest rate possible in the initial phase
of regression testing to reach 100 percent coverage soonest
or to ensure that the maximum possible coverage is
achieved by some predetermined cut-off point. Of course,
the ideal order would reveal faults soonest, but this cannot be
determined in advance, so coverage often has to serve as the
most readily available surrogate. In the Microsoft Developer
Network (MSDN) library, the achievement of adequate
coverage without wasting time is a primary consideration
when conducting regression tests [13]. Furthermare, several
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prioritization, that can improve the rate of fault detection. In
[22], Wong et al. prioritized test cases according to the
criterion of “increasing cost per additional coverage” In
[20], Srivastava and Thiagarajan studied a prioritization
technique that was based on the changes that have been
made to the program and focused on the objective function
of “impacted block coverage.” Other noncoverage based
techniques in the literature include fault-exposing-potential
(FEF) prioritization [18], history-based test prioritization
[11]. and the incorporation of varying test costs and fault
severities into test case prioritization [3], [6].
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Abstraci—To early discover faults in source code, test case
ordering hus (o be properly chosen. To this aim test prioris
tization technigues can be used. Several of these technigues
Ieave ot the exceution cost of et cases and exphoil @ single
abjective function (e.3.. code or requirements coverage).
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to maximize the number of faults to be discovered. The
technique is based on a three-dimension analysis of test
cases. The structral dimeension concerns information re-
gasding test cases under analysis (i.e., how they exercise the
under test), while funcrional dimension regards

T this paper, we present a mul
technique that determines sequences of test cases thal masimize
the number of discovered Faults that are both technical and
business eritical. The technique uses the information related 1o
the code amd requirements coverage, as well as the execution
cost of each test case. The approach alm uwses recovered
traceability links among source code and system requirements
via the Latent Semantic Indexing technique. We evaluated our

I against both a random priaritization technique and
two single=objective prioritiztion technigues on twe Java ap
plicatinns. The resulls indicate thal our proposal sutperforms
the buseline techmiques and that addiional improvements are
still possible.

Keywards-Regression Testing: i Testing: Test
ase: Prioritization; Traceability.

L

KTRODUCTION

Regression testing aims ai guaraneeing thar the inte-
gration of software components and modifications to the
source code does not compromise the expected behavior of
the software application. Relevant activities often conducted
during regression testing are [31]: (i) west selection; (f)

est mil jon; and (iti) test pricritization. Test selection
chooses the test cases that are relevant for a specific part of
the ication of for the performed mair operation.

Test minimization reduces the number of 1est cases w be
executed by removing redundant test cases, thus preserving
the capability of the suite in discovering Faulis. Test prior-
irization determines the execution order of test cases that
imizes the probability of early di ing fauls. The
ubjective of this activity is 1o ideniify test case orderings
that are effective (in terms of capability of eardy revealing
faults) and efficient (in terms of test cases execution cost).
These factors are relevant because they represent technical
and business criteria for the success of a software project
[
In this paper, we propase a novel prioritization technigue.
It is muliiobjeciive and determines test case orderings

1534-335 1412 526,00 £ 2012 1EEE 21
DO 10,1 0SS MR 201213

the coverage of users® and system requirements. The Latter
dimengion is cosr and concerns the time to execute 1t cases.

A est case ordering is achieved as a mulii-objective opli-
mization problem to balance the considered dimensions with
respect to the relatioaships (abso named traceshility links in
the following) among software artifacts. Since very often
traceability links are not available in the project documen-
tation, we use an Information Retrieval (IR) approach [16].
namely Latent Semantic Indexing (LSI). Our approach ex-
ploits this technique to recover relationships among software
artifacts (ie.. application code. test cases, and requirements
specifications) and to measure their strength.

Test pricritization techniques usually consider several
algonthms 1o prioritize test cases and are mostly based on
a single dimension (e.g.. code or reguirements coverage).
These wechnigues also assume that faulis have the same
relevance. Conversely, we identify test case ordenings that
carly reveal both technical (e.g., coding Faults) and business
critical faulis {e.g., due to the misunderstanding of sequire-
ments) by explicitly considering structural and functional
information and the time 10 execule test cases.

We have evalusied the proposed technique against more

hu S on [wo I d in
Java. The resulis indicate that the new technique on average
cutperforms the baseline techniques in revealing both tech-
nical and business critical faults, and also show that there is
room for further improvement.

The contributions of this paper are: (1) a test prioeitization
technique using a multi-objective optimization problem o
consider three dimensions based on high and low -level
information; (2) the definition of an TR-based appeoach to re-
cover ity links among: i ificati
source code, and test cases. The proposed mulii-objective
technigue is built on that approach: (3) a preliminary case
siudy on two small Java applications 1o assess the validity
of the technique.
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A Fine-Grained Parallel Multi-objective
Test Case Prioritization on GPU

Zheng Li'. Yi Bian', Ruilian Zhao'. and Jun Cheng®
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Abstract. Multi-Objective Evolutionary Algorithms (MOEAs) have
been widely used to address regression test optimization problems, in-
cluding test case selection and test suite minimization. GPU-based par-
allel MOEAs are proposed to inerease execution efficiency to fulfill the
industrial demands. When using binary representation in MOEAs, the
fitness evaluation can be transformed a parallel matrix multiplication
that is implemented on GPU easily and more efficiently. Such GPU-
based parallel MOEAs may achieve higher level of speed-up for test case
prioritization because the computation load of fitness evaluation in test
case prioritization is more than that in test case selection or test suite

1

mization. However, the non-applicability of binary representation in
the test case prioritization results in the challenge of parallel fitness eval-
uation on GPU. In this paper, we present a GPU-based parallel fitness
evaluation and three novel parallel erossover computation schemes based
on ordinal and sequential representations, which form a fine-grained par-
allel framework for multi-objective test case prioritization. The empirical
studies based on eight benchmarks and one open source program show
a maximum of 120x speed-up achieved.

Keywords: Test Case Prioritization, Mulit-Objective Optimization,
NSGA-IIL, GPU, CUDA.
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Multi Objective Metaheuristics

Bad effectiveness as the
problem dimensionality
Increases

For more than 3-objectives, all
individuals are non-dominated
- Poor Selective Pressure

No strong empirical evidence
of the cost-effectiveness with
respect to simpler heuristics
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Hypervolume

In many-objective optimization there is a growing trend to solve many-
objective problems using quality scalar indicators to condense multiple

objectives into a single objective.

Auger et al. - Theory of the hypervolume
indicator: optimal distributions and the

choice of the reference point - FOGA 2009

The hypervolume measures the quality of a set of solutions as the total

size of the objective space that is dominated by one (or more) of such

solutions.
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Hypervolume

Area(B) > Area(A)
Area(B) > Area(C)

Stronger Selective

Pressure




2-objectives

ol

W, .

— 4, “

= e LSS I __._..usu\.“_\ |

O | | ,wn.uu. ]

Y | | >} “

- - SO 4 ]

O . | !

-+ } m '

@ S R R — 8 . m |
. " _ | =

il s m ﬁ....u., @ =

© Ty T

- <! i " ﬂmwwu !

— s | 72 )

) epmnnmam s “ .

5 N

& .

> _ _ =~ h

S 7 7 7

() = =

Q. 0/, 98RIDA0)) JUIUIDIR)S

>

I e




Hypervolume Indicator for TCP
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Hypervolume Indicator for TCP

It can be used as fitness function in a Single Objective

Metaheuristic

Computational Time O(n - m)
n test cases

m testing criteria




Empirical Evaluation
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Research Questions

RQ1: What is the cost-effectiveness of HGA, compared to
cost-aware additional greedy algorithms?

Cost-cognizant Average Fault Detection Percentage (AFDP,)

RQ2 : What is the efficiency of HGA, compared to

cost-aware additional greedy algorithms?

Execution time (in seconds)




Design

Comparison with Additional Greedy algorithms
(20bj and 30bj)

6 programs from SIR

20 indipendent GA runs
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Results RQ1

Program 2-Objective 3-Objective
p-value A, magnitude p-value A, magnitude

bash < 0.01 0.88 Large < 0.01 0.95 Large
flex < 0.01 0.70 Medium < 0.01 0.75 Large
grep < 0.01 0.85 Large < 0.01 0.85 Large
printtokens 1 0.10 Large 1 0.10 Large
printtokens 2 1 0.30 Large 0.73 0.40 Small
sed < 0.01 0.85 Large 0.01 0.80 Large




Results RQ2

bash flex grep printtokens  printtokens2 sed
B Additional Greedy 20bj HGA 20bj

Average Execution Time
2-Objective formulation




bash

Results RQ2

flex grep printtokens  printtokens2
B Additional Greedy 30bj B HGA 30bj

Average Execution Time
3-Objective formulation

sed
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Summary

staternant

Test Case Prioritization

information
faults |

J

Find an ideal sorting for executing test casesin order to reveal fauits earfier

Greedy Algorithms

Priortizing Test Cases For Regression Testing

Any better solution?

o

Hypervolume-based
Genetic Algorithm

Multi Objective Metaheuristics

Pareto-ranking
Algorithms (NSGA-II)

Empirical Evslussion of Parsto Eflcient Murs-cbjucave
Ragreasion Teat Case Prioritisaticn




Test Case Prioritization

Use of surrogates

) | Approximation
‘ NP-Complete problem t——{ i

| | algc

i

hms

Summary

R

Find an ideal sorting for executing test casesin order to reves! fauits earfer

Greedy Algorithms

Priortizing Test Cases For Regression Testing

Hypervolume-based
Genetic Algorithm

Results RQ1

® Additional Greedy 20, & HGA 20b)

Average AFDP,
2-Objective formulation

prnitokens

Multi Objective Metaheuristics

Pareto-ranking
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statemant

Test Case Prioritization

z

o a priori information

‘ about faults

Summary

l

Find an ideal sorting for executing test casesin order to reves! fauits earfer

Greedy Algorithms

Priortizing Test Cases For Regression Testing

Hypervolume-based
Genetic Algorithm

Multi Objective Metaheuristics

Empirical Evslussion of Parsto Eflcient Murs-cbjucave
Ragreasion Teat Case Prioritisaticn

Pareto-ranking
Algorithms (NSGA-I1)

Results RQ1

privtokens
® Additional Greedy 20, & HGA 20b)

Average AFDP,
2-Objective formulation

sed

Results RQ2

primokens  printtokensd

) HGA 200)
Average Execution Time
2-Objective formulation

sed
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IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.41. NO.4, APRIL 2015

Improving Multi-Objective Test Case Selection
by Injecting Diversity in Genetic Algorithms

Annibale Panichella, Member, IEEE, Rocco Oliveto, Member, IEEE,
Massimiliano Di Penta, Member, |[EEE, and Andrea De Lucia, Senior Member, IEEE

Abstract—A way to reduce the cost of regression testing consists of selecting or prioritizing subsets of test cases from a test suite
according 1o some criteria. greedy elgorithms, cost cognizant additional greedy algorithms, multi-objective optimization
algarithms, and multi-objective genatic aigoriinms (MOGAS), have also baen proposad 10 1ackle this problem. However, pravious
studies hewe shawn that there Is no clear winner between greedy and MOGAS, and that their combination does nat necessarily produce
better results. In this paper we show that the optimality of MOGAS can improved by the solutions (sub-sets
of the test suite) generated during the search process. Speciically, we introouce & new MOGA, coined as Diversity basad Genetic

hogonal d hoganal evoltion that increase diversity by injecting new

Incorporate diversity as a testing criteria

Algarithm {DIV-GA), based on the of
orthoganal individuals during the ssarch process. Results of an empirical stuty conducted on eleven programs show that DIV-GA

outpertorms both greedy algorithms and the traditional MOGAS from the aptimality point of view. Moreover, the solutions (sub-sets of
the test suite) provided by DIV-GA are able to detect more taults than the other algorithms, while keeping the same test exacution cost.

Index Terms—Test case sslection, regression testing, orthogonal design, singular value decomposition, genstic sigarithms, empircal studies
-




Future Work

Investigate the scalability
for up than 3 testing criteria

selection

mlmmlzatlon
Case
pr1or1tlzat10n

Incorporate diversity as a testing criteria

regression

Apply HGA for other test case

optimization problems
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