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Objectives 
•  Assumptions:  

•  Familiarity with SBSE and main search techniques 
•  Familiarity with basic probabilities and statistics 

•  Scope:  
•  Introduction and fundamentals  
•  Provide rationale for recommendations 

•  Discussions and exchange of views are welcome 
•  Slides are verbose to use as documentation and make 

the argument structure apparent 
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Outline 
•  Problem definition 
•  Empirical study design 
•  Statistical analysis 



@ Lionel Briand 

Background 
•  Search techniques are increasingly used in SE to solve 

a variety of problems, ranging from requirements 
prioritization, re-engineering, to test generation and 
fault fixing 

•  Undecidable problems for which optimal solutions 
cannot be obtained within reasonable time 

•  Search -> Randomized algorithms 
•  The body of knowledge is increasing fast, as well as 

the research community.  
•  Now is the time to get our scientific procedures and 

reporting straight 
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Problem Definition 
•  For every problem addressed by SBSE, there is usually an 

alternative not based on search, e.g., constraint solver, model 
checker, static analysis 

•  Random search is always an alternative, and can be effective 

•  Many factors can affect the effectiveness and cost of a search 
technique, e.g., parameters, selected artifacts/problems, 
implementation 

•  Random variation (randomized algorithms) 

•  Designing, running, and analyzing SBSE empirical studies must be 
done with care to build a reliable body of knowledge 

•  Recent surveys shows this is not always the case 
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Random Variation 
•  Running a search or any randomized algorithm twice on  

the same instance of a software engineering problem 
usually produces different results. 

•  Probability distribution of search algorithm output in 
terms of various performance metrics 

•  Run an algorithm many times, collect data about 
performance 
•  How many runs? How to draw reliable conclusions?  

•  Hypothesis testing used in all scientific fields 
•  Different constraints, even within software engineering: 

sample sizes, distributions 
•  Need specific guidelines for SBSE 
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Motivating Example 
•  Two algorithms, A and B 
•  Run n=10 times 
•  Time limit (e.g., 5 minutes)  
•  Binary output: pass or fail 

•  A: successful 7 times 
•  B: successful 5 times 

•  20% of success rate difference 
•  Is A better than B??? 
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Binomial Distribution B(n,r) 
•  k successes out of n runs, with success 

rate r 
•  k successes, n-k fails, and any order 
 P(B(n,r)=k) = C(n,k) * rk * (1-r)(n-k) 

•  P(B(10,0.7)=7) = 0.26 !!! 
•  P(B(10,.7)=7) * P(B(10,.5)=5) = 0.06 !!!  
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•  P(B(10,.7)=7) * P(B(10,.5)=5) = 0.06 
•  What about if they had the same success rate: 

60% ???  
•  P(B(10,.6)=7) * P(B(10,.6)=5) = 0.04!!! 
•  Impact of number of runs:  
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Research Survey 
•  Snapshot of current practice 
•  Venues: TSE, ICSE and SSBSE 
•  Year 2009 and 2010 
•  Results: 

•  Large number of papers involving randomized 
algorithms 
•  TSE/ICSE: 7% (2009) and 21% (2010) 

•  Randomness often not taken into account properly 
•  Seldom/inappropriate use of statistical tests… 
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2009 
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2010 
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Study Design 
•  Objectives 
•  Research questions 
•  Selection of artifacts (problems) 
•  Measuring cost and effectiveness 
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Objectives 
•  Problem to be addressed: regression test selection, 

identify schedules with possible deadline misses 
•  Why is that important and in which context? 

•  Population of artifacts targeted, e.g., object-oriented 
classes, real-time systems with hard deadlines 

•  Information available (fitness function) and how to 
retrieve it, e.g., source code analysis, model 
•  Is it realistic? 

•  What alternative techniques will be considered to 
address the problem and why? 
•  Will not only include search techniques 
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Selecting Techniques 
•  In our context, it must include random search 

•  The problem may be inherently easy (e.g., large proportion of 
acceptable solutions) 

•  The problem may be artificially constrained so as to become easy, 
e.g., change operators tailored to bug sample in bug fixing 

•  Many (search) techniques 
•  Can’t try them all with all parameter settings 
•  Match my problem to a standard optimization problem 
•  Focus on well-studied, state-of-the-art techniques 
•  Simulation studies for parameter settings 
•  Our job in SBSE is to use these techniques in a smart way to solve SE 

problems, not do research in evolutionary computation 
•  E.g., using GA, finding the right representation, fitness function, and 

change operators is hard 
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Describing Techniques 
•  Customizations and parameter settings must be 

reported and justified 
•  Often missing or incomplete in many SBSE papers 
•  Important for 

•  Supporting the interpretation of results 
•  Assess their validity 
•  Compare results in future studies 
•  Meta-analysis of results from multiple studies 
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Research Questions 
•  Will lead to formulate experimental 

hypotheses to be tested (see data analysis) 
•  Which techniques is better with various 

measures of effectiveness and cost? 
•  Effectiveness under constant cost (e.g., 

generations, fitness evaluations, execution time to 
achieve coverage) 

•  Cost to achieve an objective (e.g., execution time to 
trigger a failure) 

•  Discuss cost and effectiveness measurement 
next 
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Choice of Artifacts 
•  Potentially strong impact on results 

•  The No Free Lunch theorem states that, on average across all 
possible problems, all search algorithms have the same 
performance 

•  We usually do not know how to define target  populations, but we 
need to do or best  

•  Random sampling from population not possible 

•  Often resort to convenience sample, e.g., open source projects 

•  Not always access to large collections of artifacts 

•  Threats to external validity are common 
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Choice of Artifacts II 
•  Representativeness, e.g., are container classes representative for 

OO class testing? 

•  Maximize diversity (subdomain, complexity) is one strategy and 
analyze differences in results 

•  In some cases, controlled generation of artificial cases are 
possible 

•  Building an empirical body of knowledge over time: replications  
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Measuring Cost and 
Effectiveness 

•  Validity of measures is often context dependent – 
justifications are required 

•  Cost measures should be comparable across 
techniques and clearly related to practical cost 
considerations 

•  #fitness evaluations: cannot be used to compare with 
random search and is only valid if we can assume this is the 
main cost driver in algorithms 

•  Several cost measures are typically used for various 
comparisons 

•  Effectiveness 
•  Test generation: coverage or fault (real, mutation) 
•  Directly related to fitness function or assumptions 
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Cost Measures 
Two common goals: (1) Comparison across techniques, (2) Assess 

feasibility and scalability 

Use surrogate measures to facilitate comparisons (1) 

A study typically uses one or more of the following:  
•  The number of iterations, e.g., the number of generations in genetic 

algorithms, or cycles in ant colony optimization algorithms. 

•  The cumulative number of individuals in all iterations 

•  The number of fitness evaluations  

•  Execution time. This time can be either measured using clock time or CPU 
cycles.  

•  Problem specific cost measures of the output of the algorithm, e.g., the 
size of the resulting test suite.  
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Scalability 
•  How does cost and effectiveness evolve as a function 

of the size of the problem, e.g., number of 
philosophers when looking for deadlocks 

•  Several measures of “size” may be relevant, problem 
specific 

•  We characterize the relationship between size, cost 
and effectiveness, e.g., linear or exponential. 
Regression only usable if many artifacts 

•  Scalability analysis requires the selection or 
generation of artifacts of different sizes  
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Data Analysis 
•  Statistical difference 
•  Parametric versus non-parametric tests 
•  Censored data 
•  Effect size 
•  Sample size (runs) 
•  Multiple tests 
•  Comparing diverse artifacts 
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Statistical Difference 
•  Compare technique A and B, e.g., test generation using random 

testing and genetic algorithms 

•  Goal of hypothesis testing: Make statement(s) regarding unknown 
populations’ parameter values based on sample data 

•  Main principle of hypothesis testing: Mathematical operations on 
data to produce a test statistic (e.g., t, F, U ). The test statistic 
is evaluated in reference to a sampling distribution: a theoretical 
distribution to be expected if no difference (null hypothesis)   

•  Null hypothesis (H0): no difference between A and B 

•  Can we reject H0 with confidence? 

•  What aspect of the distribution is compared depends on the 
statistical test selected, e.g., mean, median  



@ Lionel Briand 

Statistical Difference 2 

•  Two types of error: 
•  Type I: We reject H0 when true  
•  Type II: We accept H0 when false 

•  p-value: probability of type I error 
•  Significance level (α): highest p-value we accept for 

rejecting H0, e.g., 0.05 is common in other disciplines 
•  Statistical power (1 – β): probability of rejecting H0 

when false 
•  The two types of error are conflicting 

H0 T F 

Reject I 

Reject II 
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Statistical Difference 3 
•  Establishing truths versus decision making 
•  α = 0.05, p-value = 0.06, we fail to reject the null 

hypothesis. Does that make sense? 
•  Just report p-values and let the reader decide in 

context? 
•  However, in our context this should not be an issue 

(many observations can be generated) 
•  The focus should rather be on the  effect size 

(difference) and its confidence interval 
•  In practice: decision = f (cost of algorithms, effect 

size, p-value), minimize risks and maximize benefits 
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Statistical Difference 4 
•  One-tailed or two-tailed test? (definition next) 
•  p-value lower for one-tailed test  
•  Assumption about relative performance of algorithms 

based on theoretical/analytical grounds 
•  In our context, can we make such assumptions? 
•  Even naïve techniques can end up performing better 
•  When comparing randomized algorithms, it is advised 

to use two-tailed tests 
•  Lower p-values should be obtained by increasing the 

number of runs  
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1-tailed vs. 2-tailed test 
•  Definitions:  

•  two-tailed: we do not hypothesize the difference to 
be in any particular direction 
•  H0: A = B, H1: A ≠ B 

•  one-tailed: we hypothesize the difference to be in 
one direction 

•  H0: A ≤ B, H1: A > B 

•  The choice depends on prior knowledge.  
•  One-tailed tests lead to lower p-values 
•  Note: The choice should not be made after looking at 

the data! 
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Parametric versus non-
Parametric Tests 

•  A parametric test makes assumptions about the data 
distributions, e.g., t-test assumes normality and equal variance in 
samples 

•  Nonparametric tests don’t and are usually based on ranks. There 
are nonparametric versions of most parametric tests 

•  In our context: t-test and Mann-Whitney U-test 

•  In general non-parametric tests less powerful if parametric test 
assumptions are true. Useful when samples are small 

•  Parametric tests robust to some extent to violations  …. 

•  Central Limit Theorem tells us the t-test is robust to strong 
departure from normality for large samples  

•  Large? rule of thumb: n > 30 in each sample? Assumptions of CLT 
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Central Limit Theorem 
Central Limit Theorem (simplified): 

irrespective of the distribution of the 
parent population-given that its mean m 
and a variance s2, and so long as the 
sample size n is large, the distribution of 
sample means is approximately normal 
with mean m and variance s2 /n.  
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Parametric versus non-
Parametric Tests 2 

•  Parametric and non-parametric tests analyze different 
properties 

•  t-test assess differences in means while Mann-Whitney U-
test differences in stochastic order (median) 

•  For randomized algorithms we recommend using the U-test 

•  If one of the two algorithms is not randomized but 
deterministic, statistical testing still applies, but a one-
sample test should be used: one-sample Wilcoxon test 

•  If B deterministic with performance mb, we would test 
whether the performance of A is symmetric about mb 
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Mann-Whitney U test 
Objective: Alternative to the t-test. Test whether the mean 

ranks of two independent groups are significantly 
different from each other. Can be one-tailed or two-
tailed. 

Requirements: independent random samples, ordinal level 
data, may cope with tied ranks, U has a normal 
distribution if sample large enough (10 observations per 
sample if no tied scores).  

Statistic: 

€ 

U1 = n1n2 +
n1 n1+1( )
2

− R1

€ 

U2 = n1n2 −U1

n1= sample size of group 1 
n2= sample size of group 2 
R1= sum of ranks of group 1 

Use the larger of U1 or U2 
for a two-tailed test 
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Sample Null hypothesis 
The two groups 
Have the same  

median 

Null distribution 
U with n1, n2 compare 

How unusual is this test statistic? 

P < 0.05 P > 0.05 

Reject Ho Fail to reject Ho 

Test statistic 
U1 or U2  

(use the largest) 
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Zar, 1996 

Zar, 1996 
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Hypothesis Testing Steps 
1.  State H0 (i.e., what you are trying to disprove) 
2.  State H1 
3.  Determine α (at your discretion) 
4.  Determine the test statistic and associated p-value 
5.  Determine whether to reject H0 or fail to reject H0 

Reminder: p-values are only estimates based on assumptions, 
α is based on the level of risk you are willing to take 
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Classification of tests 

Sign test

One sample t-test

One group sample

Mann-Whitney U test

Two-sample t-test

Independent

Wilcoxon Signed Rank test

Paired t-test

Not Independent

Two-group sample

Kruskal Wallis test

Analysis of variance

More than two groups sample

Hypothesis Testing Procedure
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Censored Data 
•  Compare two algorithms A and B 

•  X and Y are the time A and B take to find a solution, 
respectively 

•  Run A and B n times, e.g., n targets such as branches or 
bugs to be fixed 

•  Time limit L, right censored data 
•  Success rate: γ = k/n, follows a binomial distribution 

•  Test differences in proportion with Fisher exact test 
•  Up to n = 100, p-values are precise, not estimates 

•  If success rates are similar and high, then a practical 
question is which technique uses less time? 

•  Use Mann-Whitney U-test on successful runs 
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Fisher’s Exact Test 
•  Fisher’s Exact Test is a test for independence in a 2 X 

2 table. The test holds the marginal totals fixed and 
computes the hypergeometric probability that the 
data arrangement in the table is at least as 
unbalanced. 

•  It is most useful when the total sample size and the 
expected values are small (any cell below 5). This is not 
uncommon in our context.  

•  This distribution gives probabilities for the number of 
‘successes’ in a sample of size n drawn without 
replacement from a population of size N comprised of 
a known number of ‘successes’  
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Fisher’s Exact Test Example 

 Software testing example: Are differences in 
success proportions for techniques 1 and 2 
significantly different for these 25 targets? 

Technique 1 

Technique 2 
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Hypergeometric distribution 
Example: 2x2 table with cell counts a, b, c, d. Assuming marginal totals 

are fixed: 
 M1 = a+b, M2 = c+d, N1 = a+c, N2 = b+d. 

 N = a + b + c + d = N1 + N2 = M1 + M2 
 probability (p) of observing this particular arrangement of the data 

 p follows a hypergeometric distribution: 

p= N1!N2!M1!M2! / [N!a!b!c!d!] 

To compute statistical significance, 
Fisher showed that you need to 
account only for the cases where the 
marginal totals are the same and 
among those only the cases that are 
more or as extreme extreme 
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Effect Size (ES) 
•  We typically have large numbers of runs 
•  Statistically significant difference might be irrelevant 

if low 
•  E.g., success rates 50% vs 50.1% 

•  The magnitude of the improvement is key: effect size 
•  Need standardized effect size measure 

•  Difference in “mean” values is not sufficient 
•  Depends on raw value: 2-1=1  as good as 91-90=1 
•  Ignores size effect variance in sample of artifacts 

•  Important when comparing results among case study 
artifacts of various “complexity” 
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ES For Success Rates 
•  Odds ratio: is a measure of how many times 

greater the odds are that a member of a 
certain population will fall into a certain 
category than the odds are that a member of 
another population will fall into that category 

•  In our context:   
•  Odds_ratio  =  (a/n-a) * (b/n-b) 

 Where n runs, a and b successes for two techniques 
•  Use confidence intervals for a given α	



•  Can replace hypothesis testing 
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ES In The Other Cases 
•  Most famous: Cohen D 
•  Difference in mean divided by pooled variance 
•  Rarely adequate our context 

•  Far too sensitive to distribution shapes, e.g., strong 
departures from normality 

•  Nearly meaningless when comparisons with random 
search (geometric distribution) 
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Vargha-Delaney A statistic  
•  Probability that one run of X gives better result than a 

run of Y 
•  E.g., A=0.8 means that, if you run X once and Y once, 

then there is an 80% chance that result of X is better 
•  A = (R1/m – (m+1)/2)/n, where R1 is the rank sum of the 

first group, m and n are the number of observations in 
the first group and second group, respectively  

•  In our context, often m = n (runs) 
•  We only found one paper in the literature using A 
•  Estimate => confidence intervals for A 
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Number of Runs 
•  As many as you can, e.g., 1000 

•  Lower p-values, more accurate effect sizes, etc 
•  If if differences are large enough for selected α, 

additional runs help tighten confidence intervals for 
effect size 

•  Sometimes not possible: 
•  E.g., execution required for fitness calculation and 

hardware-in-the-loop testing 
•  If not possible, state why 

•  E.g., difficult to justify if all experiments take less 
than an hour… 
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Multiple Tests 
•  Often more than two algorithms to compare 
•  Or different algorithm settings 
•  Solution depends on question: 

•  Has the choice of an algorithm/setting any effect? 
•  Omnibus test such as ANOVA, Kruskal-Wallis 

•  Which one is the best? 
•  Pairwise comparisons: Z = K(K − 1)/2 
•  Inflates the probability of Type I error 
•  Probability that at least one null hypothesis is true could 

be as high as 1 − (1 − α)Z  
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Multiple Tests II 
•  Very tricky situation, scientists disagree … 
•  Bonferroni adjustment: use α/Z as significance level (very 

conservative). Many more subtle variants.  

•  Using adjustment can hinder scientific progress by reducing the 
number of published results: tempting to leave out the poorly 
performing algorithms 

•  Our context is about decision making, e.g., choosing a test 
generation technique, not establishing truths about natural 
phenomena 

•  Rule of thumb: compute scores for each technique based on pair-
wise comparisons with pair-wise effect sizes, to obtain overall 
ranking.  
•  For each pair-wise comparison increment or decrement a score for 

each technique if difference significant (Hemmati et al., 2011) 
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Many Diverse Artifacts 
•  Sometimes, possible large number of diverse artifacts: 

•  Random generators, simulators 
•  Open-source software 

•  Difficult problem but: (1) define target and justify artifacts to 
the extent possible, (2) explain differences in results based on 
artifact characteristics 

•  Tradeoff # of runs vs # of artifacts 

•  Maximize # artifacts, but get at least enough runs (e.g., 30) for 
each artifact to get enough power 

•  Used paired statistical tests to draw conclusions from large 
samples of diverse artifacts 
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Paired Tests 

•  When comparing two techniques, we typically have two 
groups of cost or effectiveness observations across 
artifacts 

•  For each observation in group 1, there is a corresponding 
observation in group 2. 
•  Key is that all variables, other than what we are interested in, 

are controlled for between samples 
•  In our case, only the technique varies across paired observations 
•  Null hypothesis: δ = µ1 – µ2 = 0 
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Example 
•  Two techniques A and B to unit test object-oriented software 

•  Each algorithm run n times on five classes 

•  Assume the evaluation if the number of test cases generated 
before achieving full coverage 

•  X = {10k, 20k, 30k, 40k, 50k}, whereas for the second algorithm 
we obtain Y = {12k, 21k, 34k, 41k, 53k} 

•  Unpaired MannWhitney U-test: p-value = 0.69 

•  Paired Wilcoxon T test: p-value = 0.057 

•  Due to design or random sampling, different artifacts presents 
different levels of difficulty in achieving coverage 

•  With a paired test, artifacts act as their own control 
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Analyzing Differences in 
Results 

•  Comparing performance differences overall across 
artifacts is not enough 

•  The magnitude of differences should be looked at 
carefully 

•  Collect standardized effect sizes for each problem 
instance, and then average them 

•  But it does not fully solve the problem 
•  A = {0.6, 0.6, 0.6, 0.6, 0.1}. If we average those values 

on the entire case study, we would obtain A = 0.5, thus 
suggesting there is no difference among the two 
algorithms! 
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General Guidelines 
•  If binary output (e.g., success rates): 

•  Fisher Exact test 
•  Otherwise, use: 

•  Mann-Whitney U-test 
•  NEVER use a t-test 
•  Sometimes both: if same success rate, 

can check if “faster” with U-test 
•  When comparing scores of techniques 

across artifacts, use a paired test 


