
Subgroup Discovery in Defect Prediction
Daniel Rodrı́guez1, R Ruiz2, JC Riquelme3 and R Harrison4

1University of Alcalá, Madrid, Spain, daniel.rodriguezg@uah.es
2Pablo de Olavide University, Seville, Spain, robertoruiz@upo.es

3University of Seville, Seville, Spain, riquelme@us.es
4Oxford Brookes University, Oxford, UK, rachel.harrison@brookes.ac.uk

Introduction

I Subgroup Discovery (SD) algorithms aim to find subgroups of data
(represented by rules) that are statistically different given a property of
interest [3] and do not describe all instances in the dataset. They
usually describe the minority class (the interesting one).

I We deal with the problem of software defect prediction through SD
identifying software modules with a high probability of being defective.

SD Algorithms

In this work, we compare two well-known SD algorithms:
I The SD [2] algorithm is a covering rule induction algorithm that using

beam search aims to find rules that maximise qg = TP
FP+g , where TP

and FP are the no. of true and false positives and g is a generalisation
parameter to control the specificity of a rule.

I The CN2-SD [4] algorithm is an adaptation of the CN2 algorithm.It
uses WRAcc as a measure of the quality of the induced rules.

Quality Measures

Table: Confusion Matrix for Two Classes
Actual

Positive Negative

P
re

di
ct

io
n Positive True Positive (TP) False Positive (FP) Confidence =

Type I Error Precision =
False alarm TP

TP+FP
Negative False Negative (FN) True Negative (TN)

Type II error
Recall = Sensitivity = Specificity = TNr =

TN
FP+TN

TPr =
TP

TP+FN

I Coverage of a rule, Cov(Ri) =
n(Cond)

N = p(Cond) where Ri is a single
rule, n(Cond) is the number of instances covered by condition Cond
and N is the total number of instances.

I Support, Sup(Ri) =
n(Class·Cond)

N where the n(Class · Cond)
corresponds to the TP and N is the total number of instances.

I Accuracy (Confidence), Acc(Ri) =
n(Class·Cond)

n(Cond)
I Weighted Relative Acc,

WRAcc(Ri) =
n(Cond)

N

(
n(Class·Cond)

n(Cond) − n(Class)
N

)
I Significance, Sig(Ri) = 2 ·

∑nc
k=1 n(Classk · Cond) · logn(Classk ·Cond)

n(Classk)
where nc is the number of values of the target class.

Datasets

I PROMISE repository (CM1, KC1, KC2, KC3, MC2, MW1 and PC1)
I D’Ambros et al [1] repository (Equinox, Lucene and Eclipse PDE-UI)

Table: Description of the Datasets
DS # NonDef Def % Def Lang
CM1 498 449 49 9.83 C
KC1 2,109 1,783 326 15.45 C++
KC2 522 415 107 20.49 C++
KC3 458 415 43 9.39 Java
MC2 161 109 52 32.29 C++
MW1 434 403 31 7.14 C++
PC1 1,109 1,032 77 6.94 C

Table: Description of the Datasets
DS # NonDef Def % Def Lang
JDT Core 997 791 206 20.66 Java
PDE-UI 1,497 1,288 209 13.96 Java
Equinox 324 195 129 39.81 Java
Lucene 691 627 64 9.26 Java
Mylyn 1,862 1,617 245 13.15 Java

Table: McCabe and Halstead Metrics
Metric Definition

McCabe loc McCabe’s Lines of code
v(g) Cyclomatic complexity
ev(g) Essential complexity
iv(g) Design complexity

Halstead uniqOp Unique operators, n1

Base uniqOpnd Unique operands, n2

totalOp Total operators, N1

totalOpnd Total operands N2

Branch brnchCnt Branches–flow graph
Class defects?

Table: OO Metrics - summary
Metric Definition
C & K wmc Weighted Method Count

dit Depth of Inher. Tree
cbo Coupling Btwn Objects
noc No. of children
lcom Lack of Cohesion Methods
rfc Response For Class
Class defects?

Experimental Results

Table: Rules - KC2 with SD

pd pf TP FP Rules
.24 0 26 0 ev(g) > 4 ∧ totalOpnd > 117
.28 .01 30 5 iv(G) > 8 ∧ uniqOpnd > 34 ∧ ev(g) > 4
.27 .01 29 5 loc > 100 ∧ uniqOpnd > 34 ∧ ev(g) > 4
.27 .01 29 5 loc > 100 ∧ iv(G) > 8 ∧ ev(g) > 4
.27 .01 29 5 loc > 100 ∧ iv(G) > 8 ∧ totalOpnd > 117
.24 .01 26 5 iv(G) > 8 ∧ uniqOp > 11 ∧ totalOp > 80
.24 .01 26 5 iv(G) > 8 ∧ uniqOpnd > 34
.23 .01 25 5 totalOpnd > 117
.31 .01 34 5 loc > 100 ∧ iv(G) > 8
.29 .01 32 5 ev(g) > 4 ∧ iv(G) > 8
.29 .01 32 5 ev(g) > 4 ∧ uniqOpnd > 34
.28 .01 30 5 loc > 100 ∧ ev(g) > 4
.27 .01 29 5 iv(G) > 8 ∧ totalOp > 80
... ... ... ... ...

Figure: Bar Chart - KC2 with SD

Table: Rules KC2 - CN2-SD
pd pf TP FP Rules
.35 .01 38 5 uniqOpnd > 34 ∧ ev(g) > 4
.4 .02 43 9 totalOp > 80 ∧ ev(g) > 4
.78 .21 84 88 uniqOp > 11

Figure: Bar Chart KC2 with CN2-SD

Table: 10 Cross-Validation Results

COV SUP Size Complex SIG WRAcc ACC AUC

SD

CM1 .23 .72 20 3.05 4.548 .029 .60 .75
KC1 .08 .43 20 2.61 16.266 .023 .61 .66
KC2 .08 .53 20 2.19 9.581 .049 .70 .74
KC3 .29 .91 20 2.44 5.651 .037 .60 .83
MC2 .16 .65 20 2.05 2.204 .042 .64 .69
MW1 .07 .5 20 2.51 3.767 .02 .73 .68
PC1 .12 .37 20 3.51 3.697 .01 .66 .62

C
N

2
S

D

CM1 .11 .64 5 1.3 2.97 .023 .628 .62
KC1 .11 .61 5 1.1 2.91 .03 .634 .71
KC2 .16 .80 5 1.6 11.78 .065 .733 .82
KC3 .13 .89 4.9 1.29 3.14 .019 .68 .80
MC2 .15 .43 5 2.32 2.20 .04 .593 .59
MW1 .08 .56 5 2.02 3.52 .02 .661 .74
PC1 .09 .66 5 1.86 2.81 .007 .632 .69

SD

JDT .08 .54 20 2.48 13.77 .039 .66 .73
PDE .11 .41 20 3.94 1.94 .023 .60 .64
Equ .27 .90 20 2.08 4.58 .054 .62 .76
Luc .11 .58 20 2.29 4.37 .017 .74 .69
Myl .10 .43 20 2.9 12.63 .021 .67 .63

C
N

2-
S

D

JDT .12 .54 5 1.58 18.961 .055 .61 .73
PDE .14 .59 3.7 2.89 1.106 .023 .57 .68
Equ .17 .78 5 1.020 3.772 .043 .63 .71
Luc .07 .41 5 2.2 4.378 .016 .58 .65
Myl .08 .38 4.5 2.818 11.06 .018 .55 .63

Figure: AUC KC2 & JDT

Conclusions

I SD algorithms focus on finding rules for defective modules ignoring the
non-defective ones so that the algorithms are robust to problems faced
by classification algorithms such as datasets being unbalanced, noise,
inconsistency and redundancy of the data. These problems are
present in most defect prediction datasets in the software engineering
domain.
I In unbalanced datasets and considering only the number of TP and

FP as evaluation measures, the best classification rules using the
CN2 algorithm (classifier) correspond to those rules covering
samples of the non-defective modules, failing with defective ones.

I The metrics used for classifiers cannot be directly applied in SD and
need to be adapted.

References

[1] M. D’Ambros, M. Lanza, and R. Robbes.
An extensive comparison of bug prediction approaches.
In 7th IEEE Mining Software Repositories (MSR10), pages 31–41, May 2010.

[2] Dragan Gamberger and Nada Lavrac.
Expert-guided subgroup discovery: methodology and application.
Journal of Artificial Intelligence Research, 17(1):501–527, 2002.

[3] F. Herrera, C.J. Carmona del Jesus, P. González, and M.J. del Jesus.
An overview on subgroup discovery: Foundations and applications.
Knowledge and Information Systems, 2010 – In Press.

[4] Nada Lavrač, Branko Kavšek, Peter Flach, and Ljupčo Todorovski.
Subgroup discovery with CN2-SD.
The Journal of Machine Learning Research, 5:153–188, 2004.

Symposium on Search Based Software Engineering (SSBSE 2011) - Szeged, Hungary


