An Ant Colony Based Algorithm for Test Case
Prioritization with Precedence

Camila Loiola Brito Mai&, Thiago do Nascimento Ferréir&abricio Gomes de
Freitas, Jerffeson Teixeira deSouza

1 Optimization in Software Engineering Group (GOEBQE)
State University of Ceara (UECE)
60740-903, Fortaleza-CE, Brazil
camila.maia@gmail.com, thiagonascimento.uece @ groail, fabriciogf.uece@gmail.com,
jeff@larces.uece.br

Abstract. Test case prioritization is a difficult problem dboftware
Engineering, since several factors may be considererder to find the best
order for test cases. Search-based techniqueshleaveapplied to find solutions
for test case prioritization problem. Some of theseks apply Ant Colony
based algorithms, but the precedence of test caassnot considered. We
propose an Ant Colony Optimization based algoritloptioritize test cases
with precedence. Each ant builds a solution, anenwhis necessary to choose
a new vertex (test case), only allowed test cages saen by the ant,
implementing the precedence constraint of the prabl

Keywords: Ant Colony System, Test Case Prioritization, Preceden

1 Introduction

When a system is maintained, features that had Ipeeviously tested may be
impacted by the changes made to the system. drcéisie, in order to assure that such
changes did not introduce new faults, regressisting is performed, by rerunning
previously executed tests.

In this scenario, the test case prioritization, akhineans to prioritize test cases
according to some criterion [1], becomes very ingmut; since it is usually
impractical to perform exhaustive tests [2]. Thfimne cannot run all test cases, the
most significant ones can be executed first.

Like other software engineering problems, the ¢ese prioritization problem has
been studied through a search-based perspectiviheirresearch field known as
Search-Based Software Engineering [3]. Metaheasistuch as Reactive GRASP [4],
Genetic Algorithm [5] and Simulated Annealing [6ve been applied in several
approaches to test case prioritization problem.

Additionally, an algorithm based on the Ant ColdBystem metaheuristic [7] has
also been applied to this problem, as in [8] and [® those cases, however, the
precedence among test cases was not considered.

Ant Colony is a metaheuristic based on the behaviants while seeking food.
There is a collective exchange of information, tigio the pheromone.

This paper proposes an algorithm based on ACO dotébkt case prioritization
problem, considering the precedence of test cases.

The remaining of the paper is organized as follo®&sction 2 presents related
works, while Section 3 explains the test case {tization problem as it is tacked in
this work. In Section 4, the proposed algorithrdéscribed. Finally, in Section 5, we
present the conclusions and future works.

2 Related Works

There are several works that address the testpras#tization problem with search-
based algorithms, but there are few studies relmdte application of ACO to this
problem. Due to space constraints, we will citeyofbur studies that apply
metaheuristics in solving this problem, two of thkased on ACO.

The authors of [8] proposed a technique for tesé gaioritization based on genetic
algorithm that reorders the test suite considetimg objectives: time constraints for
testing and code coverage. The objective functimpléments Block Average
Percentage Coverage (APBC) metric. The proposdthigee performed better than
other existing techniques for a case study. Fotremaase study, this did not happen
because the test cases of this case study wereimerehangeable.

In [9], the authors compare five algorithms for greblem of prioritization of test
cases: Algorithm Greedy, Additional Greedy, 2-OgtijrHill Climbing and Genetic
Algorithm. They considered the following coveragetrits separately (three single-
objective approaches): Average Percentage Blockefzge (APBC), Average
Percentage Decision Coverage (APDC) and AverageeRexge Coverage Statement
(APSC). For small programs, the genetic algorithas wetter than the others. For
large programs, the two best algorithms were Add#l Greedy and 2-Optimal.

In [10], the authors present an approach to the dase prioritization problem
based on run time and fault detection rate. Indbpigroach, there is a time constraint,
which implies that this approach relates to thé dase selection problem, not the test
case prioritization problem. The authors consideset of test cases and a set of
known faults, where each test case covers one oe fianlts. The proposed ACO-
based algorithm considensants, whera is the number of test cases, and the edges of
the graph to be covered are randomly chosen byatits among ones having
maximum pheromone. The initial vertex is choserdeamly. The results obtained by
the proposed approach are similar to the techniglied Optimal Fault Coverage,
and superior to random order, reverse order armtaer techniques.

The approach proposed in [11] also considers téime information and fault
detection of test cases. The number of ants isingber of test cases, and each ant is
placed at a different vertex (test case) at theinmégg of the execution. After
initialization, the next vertex is chosen probatitially according to the heuristic
function (maximize the number of faults detectedtly test case and minimize the
execution time) and pheromone previously depoditednts. The selection process of
vertices is performed until all faults are covebgdtest cases already in the test suite.

After updating the pheromone and choosing the belsition, the algorithm checks
the runtime restriction. If the solution is not idalthe whole process is performed
again. The proposed approach has reduced by 62&%ize of the test suites to be
performed, because it was considered that a famtbe found by one or more test
cases. The proposed approach was not comparedthihapproaches.

There are two common features to the last two amres described above: the
number of ants and the fact that they do not cendide precedence among the test
cases. When considering the number of ants asutinber of test cases, the execution
of the algorithm may be slowly as the number of tases increases, since there are
more ants sharing pheromone information. Moreother,approaches do not address
the precedence among test cases, which is comnrealiworld applications.

3 Problem Definition

This section formally describes the test case pidation problem in the way it is
considered in this work. LeR be the set of requirements for the system. ThdRset
containsN requirements and each requirement has the follpaidtributes:

e importance The importance of the requirementassociated by customers,
representing its importance to the business.

« volatility;: Volatility of the requirement, representing the number of times the
requirement has been changed.

Also considelC as the set of all test cases of the systémasM test cases. Each
test case has the following attributes:

» precedenge Test case that should be performed before thiecesej. This
approach considers that a test case has at mopredecessor.

» coveragg Coverage of test cage The coverage of a test case is the set of
requirements that are tested by this test casthidrapproach, a requirement can be
tested by one or more test cases, but a test aasest only one requirement.

« executionTime Estimated time to manually run test case

* scorg: Represents the value of the test gasmsed on importance and volatility
of requirements covered by this test case, givetihéyollowing formula:

score; = Z ((importance; = weight1) + (volatility; » weight2)),

V requirement ; € coverage;

whereweightlandweight2are inputs and represent, respectively, the irapog and
volatility weights. Thus, the test case prioritinat problem can be mathematically
formulated as follows:

score;
Maximize (* P)
executlonTLme]

Subject to:
Vit €C, (precedencet}.2 = tj1) - (Qt,-l < qtjz)

WhereP; = M - ¢ + 1, andg is the position of test cageén the ordered test suite.
The above restriction states that if a test ¢ase precedent of a test cagetj; must
be positioned beforg, on the test suite.

4 Proposed Approach

This section describes the proposed algorithm,daseant colony optimization, for
the problem of prioritization of test cases witegedence.

4.1 Overview

To apply the proposed algorithm to the problem dbriizing test cases with
precedence, one must make some modeling.

Each test case of the system represents a vertakeoflirected graph to be
generated for the problem, i.e., the ¥adf graphG = (V, E) hasM elements, where
M is the number of test cases. All vertices are eotad with all others, generating
the set of edges. The pheromone information will be updategraphG.

For this approach, each artas the following information associated:

* nextNode: The next node to be visited.

« visitedNodes: Set of vertices (test cases) alre@ited by the ant.

» allowedNodes: Set of vertices allowed for the magte of the ant. This
set will be updated at each movement of the arg.allowed test cases
are represented by test cases that have no preéseddhat have had their
precedents already added to visitedNodes. Eachttienants reach the
next node, its allowedNodes set for next movenmgeopdated.

The heuristic function, used to choose the nextexeof solution is given by the

following equation:
score]-

executionTime;

Thus, the next vertex is chosen based on its scatexecution time.

4.2 Algorithm Description

For the proposed approach, which is described @ Ej each ant will build a
complete solution, i.e., a suite of test casesrediéor execution. In each iteration,
the ants will perform their activities at the satinee, sharing pheromone information.
The algorithm starts with a global initializatiomhich basically reads precedence
information and generates grafh and ants initialization, with initializes all ant
information, previously described. The functiBtND_INITIAL_NODE()chooses the
initial vertex for the ant, and can be performedtlinee different ways: random
choice, russian roulette or binary tournament. Tdw® two consider the heuristic

function as the basis for the choice of verticase algorithm can be set to run with
only one of these alternatives.

MAIN INITIALIZATION

ITERATION =0

Read test case precedence information
Generate directed graph

|Initialize pheromone

ANTS INITIALIZATION
FOR ALL ants
FOR ALL verticestj € V, visited; < False
ant.allowedNodes = UPDATE_ALLOWED_NODES()
ant.nextNode = FIND_INITIAL_NODE()
ant.visitedNode.add(nextNode)

MAIN LOOP

MAIN_INITIALIZATION()

ANTS_INITIALIZATION()

WHILE (ITERATION < MAX_ITERATIONS)

FOR EACH ank
WHILE ant.allowedNodes.size >0

k = ant.actualNode
ank.nextNode = aptFIND_NEXT_NODE()
j = antactualNode
ant.visitedNodes.add(anhextNode)
ant.allowedNodes = UPDATE_ALLOWED_NODES()
Update pheromone in edgk, j),with7,; = (1 — @) " 74j + ¢ T

MAIN LOOP FINALIZATION
currentSolution = EVALUATE_BEST_SOLUTION()
IF ((bestSolution is null) or (bestSolution < curi®olution)) THEN
bestSolution = currentSolution
ITERATION ++

RETURN bestSolution

ant,UPDATE ALLOWED NODES()) // Updates the allowedNodes set for;ant

FOR ant
ant.allowedNodes.clear() /I clear the set of allowed vertices for this ant
FOR ALL verticestj e V /I all test cases are verified again

IF (tj respects the precedence constraint and is not yet in solution)
allowedNodes.add(tj)// add the vertice to the allowedNodes set

ant;FIND NEXT NODE() /I Finds the next node for and complement its solution
Move antk to a vertex;j with probabilityp{‘j or consideringnax(t;; - wjﬁ),
considering only nodes in allowedNodes set

Fig. 1. ACO Based Algorithm for Test Case Prioritization Peof

After initialization, the main loop is executed.rfgmach ant, while there are vertices
to visit, FIND_NEXT_NODE()function is called to seek the next vertex, based

heuristic and pheromone information, taking intoa@at only test cases presenting in
allowedVertices set. After the next vertex is chgsethe function
UPDATE_ALLOWED_VERTICESI$ called to update the allowed vertices for the
ant in that moment (test cases that have no pratede that all precedents are
contained in visitedNodes).

The best solution in the execution of iterationshisn returned by algorithm and
the ant updates pheromone.

5 Conclusionsand Future Work

There are few applications of Ant Colony based @fgms in software testing
problems, as can be seen in [10] and [11]. Ourarebehas focused on dealing with
the test case prioritization problem considering firecedence among test cases.
Currently, we are in the process of implementirey ACO-based algorithm. After the
implementation is complete we will evaluate it amanpare the proposed approach to
other search-based algorithms.

References

. Mathur, A. P.: Foundations of Software Testidgarson (2008)

. Myers, G.: The Art of Software Testing. John &Yi& Sons, Inc, 2nd Edition (2004)

. Harman, M., Jones, B. F.: Search-based softwagieering. Information and Software

Technology , vol. 43, n. 14, pp. 833-839 (2001)

4. Maia, C. L. B., Carmo, R. A. F., Freitas, F. G., CamG. A. L., Souza, J. T.: Automated
Test Case Prioritization with Reactive GRASP. AdvarioeSoftware Engineering (2010)

5. Walcott, K. R., Soffa, M. L., Kapfhammer, G. MRpos, R. S.: Time-Aware Test Suite
Prioritization. In: Proceedings of the Internatibi@ymposium on Software Testing and
Analysis, pp. 1-12 (2006)

6. Mansour, N., Bahsoon, R., Baradhi, G.: Empirical farison of Regression Test Selection
Algorithms. Journal of Systems and Software, va@l.ra 1, pp. 79-90, Elsevier (2001)

7. Dorigo, M., Stutzle, T.: The ant colony optintiba metaheuristic: Algorithms,
applications, and advances. Handbook of Metahégisspringer, pp. 250-285 (2003)

8. Walcott, K. R., Soffa, M. L., Kapfhammer, G. MRpos, R. S.: Time-Aware Test Suite
Prioritization. In: Proceedings of the Internatibi@ymposium on Software Testing and
Analysis, pp. 1-12 (2006)

9. Li, Z.,, Harman, M., Hierons, R. M.: Search Algbms for Regression Test Case
Prioritization. IEEE Transactions on Software Ergiring, vol. 33, n. 4, pp. 225-237 (2007)

10.Singh, Y., Kaur, A., Suri, B.: Test case priadtion using ant colony optimization. ACM
SIGSOFT Software Engineering Notes, vol. 35, mpt,1-7 (2010)

11. Suri, B., Singhal, S.: Implementing Ant Colonyti@yzation for Test Case Selection and

Prioritization. International Journal on ComputeieBce and Engineering, vol. 3, n. 5, pp.

1924-1932 (2011)

WN P

