
An Ant Colony Based Algorithm for Test Case
Prioritization with Precedence

Camila Loiola Brito Maia1 , Thiago do Nascimento Ferreira1, Fabrício Gomes de
Freitas1, Jerffeson Teixeira deSouza1

1 Optimization in Software Engineering Group (GOES.UECE)

State University of Ceará (UECE)
60740-903, Fortaleza-CE, Brazil

camila.maia@gmail.com, thiagonascimento.uece@gmail.com, fabriciogf.uece@gmail.com,
jeff@larces.uece.br

Abstract. Test case prioritization is a difficult problem of Software
Engineering, since several factors may be considered in order to find the best
order for test cases. Search-based techniques have been applied to find solutions
for test case prioritization problem. Some of these works apply Ant Colony
based algorithms, but the precedence of test cases was not considered. We
propose an Ant Colony Optimization based algorithm to prioritize test cases
with precedence. Each ant builds a solution, and when it is necessary to choose
a new vertex (test case), only allowed test cases are seen by the ant,
implementing the precedence constraint of the problem.

Keywords: Ant Colony System, Test Case Prioritization, Precedence

1 Introduction

When a system is maintained, features that had been previously tested may be
impacted by the changes made to the system. In this case, in order to assure that such
changes did not introduce new faults, regression testing is performed, by rerunning
previously executed tests.

In this scenario, the test case prioritization, which means to prioritize test cases
according to some criterion [1], becomes very important, since it is usually
impractical to perform exhaustive tests [2]. Thus, if one cannot run all test cases, the
most significant ones can be executed first.

Like other software engineering problems, the test case prioritization problem has
been studied through a search-based perspective, in the research field known as
Search-Based Software Engineering [3]. Metaheuristics such as Reactive GRASP [4],
Genetic Algorithm [5] and Simulated Annealing [6] have been applied in several
approaches to test case prioritization problem.

Additionally, an algorithm based on the Ant Colony System metaheuristic [7] has
also been applied to this problem, as in [8] and [9]. In those cases, however, the
precedence among test cases was not considered.

Ant Colony is a metaheuristic based on the behavior of ants while seeking food.
There is a collective exchange of information, through the pheromone.

This paper proposes an algorithm based on ACO to the test case prioritization
problem, considering the precedence of test cases.

The remaining of the paper is organized as follows: Section 2 presents related
works, while Section 3 explains the test case prioritization problem as it is tacked in
this work. In Section 4, the proposed algorithm is described. Finally, in Section 5, we
present the conclusions and future works.

2 Related Works

There are several works that address the test case prioritization problem with search-
based algorithms, but there are few studies related to the application of ACO to this
problem. Due to space constraints, we will cite only four studies that apply
metaheuristics in solving this problem, two of them based on ACO.

The authors of [8] proposed a technique for test case prioritization based on genetic
algorithm that reorders the test suite considering two objectives: time constraints for
testing and code coverage. The objective function implements Block Average
Percentage Coverage (APBC) metric. The proposed technique performed better than
other existing techniques for a case study. For another case study, this did not happen
because the test cases of this case study were more interchangeable.

In [9], the authors compare five algorithms for the problem of prioritization of test
cases: Algorithm Greedy, Additional Greedy, 2-Optimal, Hill Climbing and Genetic
Algorithm. They considered the following coverage metrics separately (three single-
objective approaches): Average Percentage Block Coverage (APBC), Average
Percentage Decision Coverage (APDC) and Average Percentage Coverage Statement
(APSC). For small programs, the genetic algorithm was better than the others. For
large programs, the two best algorithms were Additional Greedy and 2-Optimal.

In [10], the authors present an approach to the test case prioritization problem
based on run time and fault detection rate. In this approach, there is a time constraint,
which implies that this approach relates to the test case selection problem, not the test
case prioritization problem. The authors consider a set of test cases and a set of
known faults, where each test case covers one or more faults. The proposed ACO-
based algorithm considers n ants, where n is the number of test cases, and the edges of
the graph to be covered are randomly chosen by the ants among ones having
maximum pheromone. The initial vertex is chosen randomly. The results obtained by
the proposed approach are similar to the technique called Optimal Fault Coverage,
and superior to random order, reverse order and no order techniques.

The approach proposed in [11] also considers the runtime information and fault
detection of test cases. The number of ants is the number of test cases, and each ant is
placed at a different vertex (test case) at the beginning of the execution. After
initialization, the next vertex is chosen probabilistically according to the heuristic
function (maximize the number of faults detected by the test case and minimize the
execution time) and pheromone previously deposited by ants. The selection process of
vertices is performed until all faults are covered by test cases already in the test suite.

After updating the pheromone and choosing the best solution, the algorithm checks
the runtime restriction. If the solution is not valid, the whole process is performed
again. The proposed approach has reduced by 62.5% the size of the test suites to be
performed, because it was considered that a fault can be found by one or more test
cases. The proposed approach was not compared with other approaches.

There are two common features to the last two approaches described above: the
number of ants and the fact that they do not consider the precedence among the test
cases. When considering the number of ants as the number of test cases, the execution
of the algorithm may be slowly as the number of test cases increases, since there are
more ants sharing pheromone information. Moreover, the approaches do not address
the precedence among test cases, which is common in real world applications.

3 Problem Definition

This section formally describes the test case prioritization problem in the way it is
considered in this work. Let R be the set of requirements for the system. The set R
contains N requirements and each requirement has the following attributes:

• importancei: The importance of the requirement i, associated by customers,
representing its importance to the business.

• volatilityi: Volatility of the requirement i, representing the number of times the
requirement has been changed.

Also consider C as the set of all test cases of the system. C has M test cases. Each
test case has the following attributes:

• precedencej: Test case that should be performed before the test case j. This
approach considers that a test case has at most one predecessor.

• coveragej: Coverage of test case j. The coverage of a test case is the set of
requirements that are tested by this test case. In this approach, a requirement can be
tested by one or more test cases, but a test case can test only one requirement.

• executionTimej: Estimated time to manually run test case j.
• scorej: Represents the value of the test case j, based on importance and volatility

of requirements covered by this test case, given by the following formula:

������ = 	
��
��������� ∗ ����ℎ�1� + ������������ ∗ ����ℎ�2��,
∀ ��!"���
��� � ∈ ���������

where weight1 and weight2 are inputs and represent, respectively, the importance and
volatility weights. Thus, the test case prioritization problem can be mathematically
formulated as follows:

$�%�
�&� 	� ������
�%��"����'�
��

∗ (��
)

�*+

Subject to:

∀ ��+, ��, ∈ -, .�����/����012 = ��+3 → �!015 < !012�

Where Pj = M - qj + 1, and qj is the position of test case j in the ordered test suite.
The above restriction states that if a test case tj1 is precedent of a test case tj2, tj1 must
be positioned before tj2 on the test suite.

4 Proposed Approach

This section describes the proposed algorithm, based on ant colony optimization, for
the problem of prioritization of test cases with precedence.

4.1 Overview

To apply the proposed algorithm to the problem of prioritizing test cases with
precedence, one must make some modeling.

Each test case of the system represents a vertex of the directed graph to be
generated for the problem, i.e., the set V of graph G = (V, E) has M elements, where
M is the number of test cases. All vertices are connected with all others, generating
the set E of edges. The pheromone information will be updated in graph G.

For this approach, each ant i has the following information associated:
• nextNode: The next node to be visited.

• visitedNodes: Set of vertices (test cases) already visited by the ant.

• allowedNodes: Set of vertices allowed for the next move of the ant. This
set will be updated at each movement of the ant. The allowed test cases
are represented by test cases that have no precedents or that have had their
precedents already added to visitedNodes. Each time the ants reach the
next node, its allowedNodes set for next movement is updated.

The heuristic function, used to choose the next vertex of solution is given by the
following equation: ������

�%��"����'�
��

Thus, the next vertex is chosen based on its score and execution time.

4.2 Algorithm Description

For the proposed approach, which is described in Fig. 1, each ant will build a
complete solution, i.e., a suite of test cases ordered for execution. In each iteration,
the ants will perform their activities at the same time, sharing pheromone information.

The algorithm starts with a global initialization, which basically reads precedence
information and generates graph G, and ants initialization, with initializes all ants’
information, previously described. The function FIND_INITIAL_NODE() chooses the
initial vertex for the ant, and can be performed in three different ways: random
choice, russian roulette or binary tournament. The last two consider the heuristic

function as the basis for the choice of vertices. The algorithm can be set to run with
only one of these alternatives.

Fig. 1. ACO Based Algorithm for Test Case Prioritization Problem.

After initialization, the main loop is executed. For each ant, while there are vertices

to visit, FIND_NEXT_NODE() function is called to seek the next vertex, based on

7'89:'7;< = 0
MAIN_INITIALIZATION

Read test case precedence information
Generate directed graph
|Initialize pheromone

ANTS_INITIALIZATION

FOR ALL ants
FOR ALL vertices �> ∈ ?, ������/� ← A����

 antk.allowedNodes = UPDATE_ALLOWED_NODES()
 antk.nextNode = FIND_INITIAL_NODE()
 antk.visitedNode.add(nextNode)

MAIN_LOOP
MAIN_INITIALIZATION()

 ANTS_INITIALIZATION()
WHILE (ITERATION < MAX_ITERATIONS)
 FOR EACH antk

 WHILE antk.allowedNodes.size > 0
 k = antk.actualNode

antk.nextNode = antk.FIND_NEXT_NODE()
j = antkactualNode
antk.visitedNodes.add(antk.nextNode)
antk.allowedNodes = UPDATE_ALLOWED_NODES()
Update pheromone in edge �B, >�,with CD� = �1 − F� ∙ CD� + F ∙ CH

MAIN LOOP FINALIZATION
currentSolution = EVALUATE_BEST_SOLUTION()
IF ((bestSolution is null) or (bestSolution < currentSolution)) THEN
 bestSolution = currentSolution
ITERATION ++

RETURN bestSolution

anti.UPDATE_ALLOWED_NODES() // Updates the allowedNodes set for anti

FOR anti
 anti.allowedNodes.clear() // clear the set of allowed vertices for this ant

FOR ALL vertices �> ∈ ? // all test cases are verified again
 IF (tj respects the precedence constraint and is not yet in solution�
 allowedNodes.add(tj) // add the vertice to the allowedNodes set

anti.FIND_NEXT_NODE() // Finds the next node for anti to complement its solution

Move ant B to a vertex �> with probability ���D or considering
�%�C�� ∙ ��
Y),

 considering only nodes in allowedNodes set

heuristic and pheromone information, taking into account only test cases presenting in
allowedVertices set. After the next vertex is chosen, the function
UPDATE_ALLOWED_VERTICES() is called to update the allowed vertices for the
ant in that moment (test cases that have no precedents or that all precedents are
contained in visitedNodes).

The best solution in the execution of iterations is then returned by algorithm and
the ant updates pheromone.

5 Conclusions and Future Work

There are few applications of Ant Colony based algorithms in software testing
problems, as can be seen in [10] and [11]. Our research has focused on dealing with
the test case prioritization problem considering the precedence among test cases.
Currently, we are in the process of implementing the ACO-based algorithm. After the
implementation is complete we will evaluate it and compare the proposed approach to
other search-based algorithms.

References

1. Mathur, A. P.: Foundations of Software Testing. Pearson (2008)
2. Myers, G.: The Art of Software Testing. John Wiley & Sons, Inc, 2nd Edition (2004)
3. Harman, M., Jones, B. F.: Search-based software engineering. Information and Software

Technology , vol. 43, n. 14, pp. 833-839 (2001)
4. Maia, C. L. B., Carmo, R. A. F., Freitas, F. G., Campos, G. A. L., Souza, J. T.: Automated

Test Case Prioritization with Reactive GRASP. Advances in Software Engineering (2010)
5. Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., Roos, R. S.: Time-Aware Test Suite

Prioritization. In: Proceedings of the International Symposium on Software Testing and
Analysis, pp. 1-12 (2006)

6. Mansour, N., Bahsoon, R., Baradhi, G.: Empirical Comparison of Regression Test Selection
Algorithms. Journal of Systems and Software, vol. 57, n. 1, pp. 79-90, Elsevier (2001)

7. Dorigo, M., Stutzle, T.: The ant colony optimization metaheuristic: Algorithms,
applications, and advances. Handbook of Metaheuristics. Springer, pp. 250-285 (2003)

8. Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., Roos, R. S.: Time-Aware Test Suite
Prioritization. In: Proceedings of the International Symposium on Software Testing and
Analysis, pp. 1-12 (2006)

9. Li, Z., Harman, M., Hierons, R. M.: Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering, vol. 33, n. 4, pp. 225-237 (2007)

10. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant colony optimization. ACM
SIGSOFT Software Engineering Notes, vol. 35, n. 4, pp. 1-7 (2010)

11. Suri, B., Singhal, S.: Implementing Ant Colony Optimization for Test Case Selection and
Prioritization. International Journal on Computer Science and Engineering, vol. 3, n. 5, pp.
1924-1932 (2011)

