
Searching the Variability Space to Fix Model
Inconsistencies: A Preliminary Assessment

Roberto E. Lopez-Herrejon, Alexander Egyed

Institute for Systems Engineering and Automation
Johannes Kepler University Linz, Austria

roberto.lopez@jku.at, alexander.egyed@jku.at

Abstract. Recent years have witnessed a convergence between research in Soft-
ware Product Lines (SPL) and Model-Driven Engineering (MDE) that leverages
the complementary capabilities that both paradigms can offer. A crucial factor
for the success of MDE is the availability of effective support for detecting and
fixing inconsistencies among model elements. The importance of such support is
attested by the extensive literature devoted to the topic. However, when MDE is
coupled with SPL, the research focus has been devoted to inconsistency detec-
tion, while leaving fixing largely unexplored. To address this issue, a first step is
locating where to apply the required fix(es) such that the necessary feature com-
binations of a product line are considered. It is not uncommon for the number of
such feature combinations – variability space – to be quite large which renders
unfeasible any exhaustive exploration. In this paper, we present early results of
our ongoing work which relies on a basic search technique to effectively identify
the places where the fixes should be placed. We evaluated our approach with sixty
SPL examples.

1 Introduction

Today, software systems are more frequently being built as a family of systems also
known as Software Product Line (SPL) [1,2]. In a SPL, each member product imple-
ments a different combination of features – increments in program functionality [1].
The success of a SPL lies at the effective management and realization of its variability,
defined as the capacity of software artifacts to vary [3]. Extensive research and prac-
tice has been documented that corroborates the significant benefits of applying SPL
practices both in academia and industry [2].

As Model-Driven Engineering practices become more pervasive, so does the im-
portance of keeping all the involved models consistent. A core objective of research in
consistency checking has been to verify that a model adheres to consistency rules that
describe the semantic relationships amongst their elements. It should be pointed out
that, in the context of this paper, a model is any software artifact such as source code,
configuration scripts, UML models themselves, etc. A classical example of a consis-
tency rule in UML is that if a sequence diagram has a message m targeting an object of
class C, then the class diagram of class C must contain method m. Violations to consis-
tency rules are called inconsistencies and must be effectively detected and, whenever



possible, resolved. Multiple approaches have been proposed for consistency checking
that have proven successful.

Variability poses an even more stringent demand for consistency checking, namely,
verifying that not only one but all possible feature combinations that are allowed in the
product line – variability space – are indeed consistent. Variability modeling specifies
all meaningful and legal feature combinations in a SPL, and its de facto standard are
Feature Models (FM) [4]. A rather naive approach would thus be to check the consis-
tency and fix any inconsistencies for each possible feature combination that is speci-
fied by a feature model. Not surprisingly, this trivial approach is unfeasible due to the
large number (potentially exponential) of feature combinations. In this paper, we use
variability modeling analysis ([5]) for guiding the search to effectively determine the
places where consistency fixes should be placed. We evaluate our approach in sixty
SPL examples.

2 Detecting Inconsistencies with Safe Composition

The main source of inconsistencies in models that have variability is the discrepan-
cies between what variability is modeled (using a feature model) and how variability
is actually realized. A mechanism to detect such discrepancies works by mapping to a
propositional logic representation both the feature model and the consistency rule in-
stances present in realization of a SPL. This representation is then used by SAT-based
techniques for their analysis. In this section we briefly explain how this process works,
for more details refer to [6].

Fig. 1. Feature Model Example

Feature models. Feature models are the de
facto standard to model the common and variable
features of SPL and their relationships [4]. Fig-
ure 1 shows a feature model example. Features
are depicted as labeled boxes and are connected
with lines to other features with which they re-
late, collectively forming a tree-like structure. The
root feature of a SPL is always included in all pro-
grams, in this case the root feature is VOD. A fea-
ture can be classified as: mandatory if it is part of
a program whenever its parent feature is also part
(e.g. Play), and optional if it may or may not be
part of a program whenever its parent feature is
part (e.g. Record). Mandatory features are de-
noted with filled circles while optional features are denoted with empty circles both at
the child end of the feature relations denoted with lines. Features can be grouped into:
inclusive-or relation whereby one or more features of the group can be selected and
exclusive-or relation where exactly one feature can be selected. These relations are de-
picted as filled arcs and empty arcs respectively. In Figure 1, feature Record with its
children features CD and Card is an example of inclusive-or, whereas feature Play
with children TV and Mobile form an exclusive-or. Additionally, there are constraints



that cannot be expressed directly on a feature diagram [5]. Each feature combination is
called a configuration, defined as follows (adapted from [5]):

Definition 1. A configuration conf is a 2-tuple [sel,sel] where sel and sel are respec-
tively the set of selected and not-selected features of a member product. Let FS be the
set of features of a feature model, such that sel, sel ⊆ FS, sel ∩ sel = ∅, and sel ∪ sel
= FS. We use the terms conf.sel and conf.sel to respectively refer to the set of selected
and not-selected features of conf, and ∅conf to denote the empty configuration [∅,∅].

A configuration is valid if it adheres to the semantics of its feature model. For
instance, the following is a valid configuration of our feature model in Figure 1:
conf=[{VOD, Play, TV}, {Mobile, Record, CD, Card}]. It should
be noted that typical feature models can have hundreds if not thousands of valid config-
urations.

Safe Composition. Safe composition comes from research in programming lan-
guages and is the guarantee that all valid configurations of a SPL’s feature model are
type safe, that is, they do not have undefined references to structural elements such
as classes, methods or fields [7]. Safe composition is based on Czarnecki’s et al. ob-
servation that variability realization should follow from variability modeling (i.e as
denoted in feature models [8]). Safe composition uses propositional logic to express
and relate these two terms. The mapping from feature models to propositional logic
is based on the type of feature or relation. For example, optional feature Record is
mapped to Record ⇒ VOD, meaning that in a configuration if Record is selected
then VOD should also be selected. As another example, inclusive-or relation is mapped
to Record ⇔ CD ∨ Card, which means that if Record is selected either or both
of CD and Card can be selected. More details on this mapping can be found in [5]. Let
PLf denote the propositional logic representation of a feature model. The second term
is the variability realization which is computed for each consistency rule instance that
we want to verify. We denote it with IMPf . Our interest is in verifying that individual
consistency rule instances are consistent for all valid configurations of the product line.
This intent is captured by Equation (1). When this equation is evaluated with a satisfi-
ability, (SAT) solver, if it is satisfiable it means that there are configurations that make
the rule instance inconsistent. Such faulty configurations can be readily identified.

¬(PLf ⇒ IMPf ) (1)

IMPf ≡ F ⇒
∨

i=1..k

Freqi (2)

Let us explain how term IMPf can be obtained. Recall our UML consistency rule
example: Message action must be defined as an operation in receiver’s class. Assume
that feature Play has in its sequence diagram message action playwith class Player
as receiver but that its class diagram does not define that method. For this instance
to be consistent, the play method ought to be defined in other feature. Assume that
it is defined in the class diagram of feature TV. Following Equation (2) our term is
then IMPf ≡ Play ⇒ TV. We define requiring elements as the set of elements that
requires the presence of other elements to be consistent. For example, message play
with its parameter and target lifeline. Also, we define required elements as the set of
elements that make consistent a set of requiring elements. An example is method play.



3 Fixing Inconsistencies by Searching Variability Space

Let us consider our previous example with IMPf ≡ Play ⇒ TV. When this term
is passed to the safe composition Equation (1) and evaluated it is satisfiable. There
are three configurations at fault, namely those that have feature Mobile selected. The
question is: Where do fixes (definition of method play) should be placed? Before we
proceed, we define some terms and functions our search algorithm depends on.

Definition 2. A Consistency Rule Instance (CRI) is a 4-tuple [F,RME,TS,FC] where:

– F is the feature that contains the requiring model elements, i.e. left-hand side term
in IMPf .

– RME are the requiring model elements.
– TS is the set of pairs (feature, REDME) which corresponds to the feature that con-

tains the required model elements REDME. We refer to the set of features in the
pairs of TS as TS[feature].

– FC is a faulty feature configuration that violates the consistency rule instance.

For example, the CRI of message play is: [Play, {playmsg}, {(TV,
playop)}, [{VOD, Play, TV},{Mobile, Record, CD, Card}]].
Note that we use subscripts msg and op to respectively refer to the message use and
operation definition. Now we define some other additional auxiliary functions:

– pwc(P, F, G): pair-wise commonality operation that receives as input a feature
model P and two features F and G, and returns the number of products that have
both features.

– maxCom(F,FC,TS,FS): returns a feature G such that G ∈ FC.sel , G /∈ TS and G /∈
FS which has the highest pair-wise commonality value with F.

– SafeComposition(PLf ,F,TS[feature]): evaluates safe composition Equation (1) with
IMPf≡ F ⇒

∨
G∈TS[feature] G. Returns ∅conf if SAT evaluation is unsatisfiable,

otherwise returns the first faulty configuration found.

Definition 3. Fixing set: A fixing set for a CRI [F,RME,TS,FC] is a set of features FS
such that SafeComposition(PLf ,F,FS)=∅conf . In other words, FS guarantees that CRI
is consistent for all feature configurations.

Algorithm (1) sketches our approach for computing minimal size fixing sets. It uses
Breadth First Search with a queue to store the candidate partial fixing sets. For each
fixing set, it selects candidate features that have the highest pair-wise commonality
value with the corresponding requiring feature F. The intuition is that such candidate
features are the most likely ones to appear in the same configurations where feature F
appears and thus they have the higher chances to resolve the inconsistencies. Notice
that our function maxCom chooses a feature from the unselected features of the current
faulty configuration FC and that have not been already chosen in the fixing set FS. This
process continues until no faulty configuration is found for one of the partial fixing sets
stored in the queue. The loop terminates because in the worst case scenario all features
in a SPL (except the requiring feature F) would be in the fixing set.



Algorithm 1 Computing Minimal Size Fixing Sets
Input: CRI of requiring type [F,RME, TS, FC] with FC 6= ∅conf , and PLf .
Output: Fixing set FS.
FC′ := FC
FS := TS[feature]
FSQ.enqueue(FS)
while FC′ 6= ∅conf do

FSQ.dequeue(FS)
G := maxCom(F, FC′, TS, FS)
FS := FS ∪G
FC′ := SafeComposition(Plf , F, FS)
FSQ.enqueue(FS)

end while
return FS

4 Preliminary Evaluation

To evaluate our algorithm we gathered 60 feature models publicly available in the
SPLOT repository (a website that collects features models and is open to the com-
munity [9]), and computed fixing sets for all the features in all the features models by
calling our algorithm with an empty parameter TS and a maxCom scheme of not con-
sidering SPL-wide common features. The sizes of the feature models analyzed range
from 9 to 94, and number of configurations from one to millions.

The first step in our evaluation consisted in measuring the time it took to compute
the pwc values. For this purpose we use FAMA tool because it permits definition of
feature model operations [10]. Additionally, it provides support for different reason-
ing engines, in our case we utilized Binary Decision Diagrams (BDD) which are more
appropriate for the implementation of counting operations such as ours. We ran our ex-
amples on an Intel Core-Duo at 2.8 GHz. As expected, the computation time increases
steadily as the number of features increases (with 94 features it took 1600 secs aprox.).
It should be noted though that this computation is performed only once and could be
carried out in a lazy form as needed thus mitigating this computation time. Part of our
future work is exploring more efficient approaches to compute these values [11]. Fur-
thermore we observed that, sauf of few exceptions, even for larger feature models the
length of the majority of the fixing sets is mostly around five elements and the corre-
sponding computation time is in the order of miliseconds even for the largest feature
models.

5 Conclusions and Future Work

In this paper, we presented a simple search algorithm that finds the features where the
required elements of single consistency rule instances must be located to guarantee
consistency for all the valid feature configurations of a product line. We analyzed our
algorithm with sixty feature model examples and found that it performs efficiently and
can scale.



We argue that Software Product Lines is a research area ripe for Search-Based Soft-
ware Engineering. This is so because of the sheer number of possible feature configu-
rations that typical feature models represent (which renders unfeasible considering the
entire search space), and the fact that the desired solutions are usually not unique or
optimal so a form of fitness function must be employed [12]. A first work that draws
this connection is Ullah’s which combines a genetic algorithm with a clustering tech-
nique for evolving a single system into a SPL aiming at causing the least impact on the
underlying system architecture [13].

Currently we are working on fixing multiple consistency rule instances. The main
challenge is when instances overlap such that fixing one inconsistency may cause new
inconsistencies in another rule instance in the same or in difference feature configura-
tions. We are exploring basic Hill-Climbing search and other different metaheuristics
for addressing this problem.

Acknowledgments. We thank Alexander Nöhrer, Pablo Trinidad and David Bena-
vides for their tool support. We also thank our anonymous reviewers for their references.
This research was partially funded by the Austrian FWF under agreement P21321-N15
and Marie Curie Actions - Intra-European Fellowship (IEF) project number 254965.

References

1. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans.
Software Eng. 30(6) (2004) 355–371

2. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer (2005)

3. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Softw., Pract. Exper. 35(8) (2005) 705–754

4. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

5. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later:
A literature review. Inf. Syst. 35(6) (2010) 615–636

6. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models with vari-
ability. In Kühne, T., Selic, B., Gervais, M.P., Terrier, F., eds.: ECMFA. Volume 6138 of
Lecture Notes in Computer Science., Springer (2010) 217–232

7. Thaker, S., Batory, D.S., Kitchin, D., Cook, W.R.: Safe composition of product lines. In
Consel, C., Lawall, J.L., eds.: GPCE, ACM (2007) 95–104

8. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-
formedness ocl constraints. In Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L., eds.: GPCE,
ACM (2006) 211–220

9. : Software Product Line Online Tools(SPLOT) (2011) http://www.splot-research.org/.
10. : FAMA Tool Suite (2011) http://www.isa.us.es/fama/.
11. Fernández-Amorós, D., Gil, R.H., Somolinos, J.A.C.: Inferring information from feature

diagrams to product line economic models. In Muthig, D., McGregor, J.D., eds.: SPLC.
Volume 446 of ACM International Conference Proceeding Series., ACM (2009) 41–50

12. Harman, M.: Why the virtual nature of software makes it ideal for search based optimization.
In Rosenblum, D.S., Taentzer, G., eds.: FASE. Volume 6013 of Lecture Notes in Computer
Science., Springer (2010) 1–12

13. Ullah, M.I.: Cope+: A method for design and evaluation of product variants. Technical
Report SERG-2009-03 (August 2009)


	Searching the Variability Space to Fix Model Inconsistencies: A Preliminary Assessment
	Roberto E. Lopez-Herrejon, Alexander Egyed

