
Multi Objective Algorithms for Automated
Generation of Combinatorial Test Cases with

the Classification Tree Method

Peter M. Kruse1 and Kiran Lakhotia2

1 Berner & Mattner Systemtechnik GmbH, Gutenbergstr. 15, Berlin, Germany
peter.kruse@berner-mattner.com,http://www.berner-mattner.com/

2 CREST, UCL, Gower Street, London, UK
k.lakhotia@cs.ucl.ac.uk,http://crest.cs.ucl.ac.uk/

Abstract. Test case selection and prioritization are well studied and
understood regression testing techniques. Equally, test case generation
is an active research area. Yet the combination of these techniques re-
mains largely unexplored. This paper proposes to use a multi objective
approach to combine a test case generation technique, the Classification
Tree Method, with a test case selection and prioritization method. Our
work aims to generate optimized test suites, containing test cases or-
dered according to their importance with respect to test goals. We plan
to incorporate the algorithms we develop during this work into the Clas-
sification Tree Editor, an industrial strength testing tool provided by
Berner & Mattner, and will be empirically evaluating our approach on a
set of benchmark systems.

Keywords: classification tree method, prioritized test case generation,
test case selection, test suite optimization

1 Introduction

In an ideal world a tester would be able to run as many tests as required.
However, due to limited resources, such as manpower, availabililty of test infras-
tructure like Hardware In the Loop systems etc., a tester often has to select a
subset of test cases to run. Despite this, a tester will aim to maintain a sufficient
level of test coverage and failure detection capability. If high-value test cases
have been determined from previous software projects, a tester could start with
those and supplement the tests with additional test cases from a global test case
list for the new project. While there is no guarantee the selected test cases are
more important than any of the other test cases, there is no well-established way
to identify the most important test cases from a given test suite.

In this article we propose to investigate the use of multi objective algorithms
in order to combine a test case generation technique, the Classification Tree
Method, with a test case selection and prioritization method. The objective of the
proposed work is to generate optimized test suites, containing test cases ordered
according to their importance with respect to test goals. Yoo and Harman [1]



2 Peter M. Kruse, Kiran Lakhotia

have already shown that multi objective algorithms can be applied to test case
selection and prioritization problems. In 2011, Harman [2] gave an invited talk at
a regression workshop in which he further underlined the need for multi objective
algorithms to tackle the kind of problems which we will also be considering in
this paper.

2 Definitions and Background

2.1 Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT [3]) is an effective testing approach for
detecting failures caused by certain combinations of components or input values.
The tester identifies the relevant test aspects and defines corresponding classes.
These classes are called parameters, their elements are called values. We assume
the parameters to be disjoint sets. A test case is a set of n values, one for each
parameter.

CIT is used to determine a smallest possible subset of tests that covers all
combinations of values specified by a coverage criterion with at least one test
case. A coverage criterion is defined by its strength t that determines the degree
of parameter interaction and assumes that all parameters are considered.

The most common coverage criterion is 2-wise (or pairwise) testing, that
is fulfilled if all possible pairs of values are covered by at least one test case
in the result test set. A large number of CIT approaches have been presented
in the past. An overview and classification of approaches can be found in [4]
and [5], while [6] provide a recent survey of CIT and its evolution. A survey that
focuses on CIT with constraints is given in [7]. Nearly all publications investigate
pairwise combination methods, but most of them can be extended to arbitrary
t-combinations.

Elbaum et al. provide a good overview of existing prioritization approaches [8].
There are two known algorithm supporting prioritized test case generation. The
first is an algorithm published in [9], which is an extension to [10]. For efficiency
reasons, this algorithm does not consider constraints [7].

The other one is a Binary Decision Diagram (BDD)-based approach pub-
lished in [11]. The idea is to build a single BDD for a test problem taking
constraints into account. The BDD then holds all valid assignments and is used
to successively read valid test cases from it in order of their importance.

2.2 Classification Tree Method and Classification Tree Editor

The classification tree method [12] aims at systematic and traceable test case
identification for functional testing over all test levels (for example, component
test or system test). It is based on the category partition method [13], which
divides a test domain into disjunctive classes representing important aspects
of the test object. The parameters in a classification tree method are called
classifications and their values are called classes.



Algorithms for generation of combinatorial test cases 3

The Classification Tree Editor (CTE XL) was introduced together with the
classification tree method [12]. Current versions of the CTE XL support au-
tomated test case generation using CIT and user-defined constraints, so called
dependency rules [14]. Current test case generation offers four different coverage
modes: Minimal combination creates a test suite that uses every class from each
classification at least once in a test case. Pairwise combination creates a test
suite that uses every class pair from disjunctive classifications at least once in
a test case. Threewise combination (”triple-wise”) creates a test suite that uses
every triple of classes from disjunctive classifications at least once in a test case.
Complete combination creates a test suite that uses every possible combination
of classes from disjunctive classification in a test case.

Prioritization is used to assign values of importance to classification tree el-
ements. This is typically done by a test engineer prior to test case generation.
These values of importance are called weights. To cover various kinds of test as-
pects, these weights can differ. Higher and lower weights reflect higher and lower
importance, respectively. Consequently, one is able to compare the elements of
the classification tree to determine their importance under a given test aspect
and to guide test case generation by priorities.

An introduction to prioritized test case generation with the classification tree
method can be found in [15].

2.3 Multi Objective Algorithms

In Multi Objective Problems (MOP), algorithms have to optimize two or more
conflicting constraints. A typical example of a MOP is the Knapsack problem,
where the goal is to minimize the weight of a sack while maximising the profit (by
placing items into the sack). MOPs do not usually have a single solution. Instead,
a decision maker has to find a good trade-off between the different objectives.
This is achieved by generating a set of Pareto optimal solutions. Such a set
contains only nondominating solutions and its representation in the objective
space is called a Pareto front. The concept of domination is defined as:

Individual X dominates Y if, and only if, X is better than Y in at least
one objective, and no worse in all other objectives.

More formally, assuming the goal is to minimize all objectives, a Pareto front
and Pareto optimal set can be defined as ([16]):

Pareto Optimal Set: For a given MOP f(x), the Pareto Optimal Set
(P∗) is defined as: P∗ := {x ∈ F | ¬∃x′ ∈ F f(x′) ≤ f(x)}, where F is
the decision variable space.

A subset of Evolutionary Algorithms, known as Multi Objective Evolutionary
Algorithms (MOEA), are naturally suited for MOPs. Firstly, they are population
based. Some individuals within the population will be better suited for one
objective than another and so the population evolves over time into a Pareto



4 Peter M. Kruse, Kiran Lakhotia

optimal set. The second advantage of MOEAs is their ability to optimize a MOP
in a single run. Alternative methods, such as hill climbers or a single objective
Genetic Algorithm, can only find a single point on a Pareto front in any given
run. Therefore these methods need to be executed repeatedly in order to explore
the full Pareto front. In addition, for each run, weights for different objectives
have to be adjusted so that the search is able to find alternative solutions of a
Pareto front. However, deciding on a good set of weights is not an easy problem.

Over the years researchers have come up with many different MOEAs. This
paper will only consider two well known algorithms: NSGA-II [17] and SPEA-
II [18].

NSGA-II is an Elitist Nondominated Sorting Genetic Algorithm. After evalu-
ation, individuals are divided into different fronts. The first front contains only
solutions that are not dominated by any other individuals. It represents the
current Pareto front. Once it has been generated, the solutions are (temporar-
ily) removed from the population and the process is repeated for the remaining
individuals, generating the second frontier and so forth.

After all individuals have been assigned to a frontier, every individual within
a front is assigned a crowding distance. The crowding distance measures the
average distance of two solutions on either side of an individual, along each of
the objectives. Given two individuals within the same frontier, one individual is
preferred over another if it has a greater crowding distance. It means the indi-
vidual lies in a less crowded region of the Pareto front, helping the optimization
to create a more diverse set of solutions.

Once all members of a population have been assigned to a frontier and been
given a crowding distance, the entire population can be ranked. The NSGA-II
then uses a ranked based selection strategy to generate the mating population.

SPEA-II, a Strength Pareto Evolutionary Algorithm, maintains a separate fixed
size archive in addition to the population being optimized. After every evaluation
step, all nondominated solutions are copied into the archive. At every update, the
archive is pruned of solutions that have become dominated by new additions.
Once the archive is full, further solutions are removed based on a clustering
technique, to make room for new solutions in successive iterations. The clustering
aims to preserve the characteristics of the current Pareto front despite removing
solutions.

In SPEA-II, individuals in a population are assigned a fitness value based on
the number of solutions they dominate and are dominated by, both within the
current population and the archive population. This is called the strength of an
individual. In case two individuals are of equal strength, SPEA-II uses a density
measure to distinguish between solutions. This measure is an adaptation of the
k-th nearest neighbour method [19].

3 Proposal

For the usage of search-based techniques in the CTE XL, we see three consecutive
fields:



Algorithms for generation of combinatorial test cases 5

1. The search for optimal (as small as possible) t-wise coverage for any given
test problem: As shown in the previous section, there is a lot of existing work,
from Colbourn [9, 10], Cohen [3, 7], and others [20]. This includes using search-
based approaches like simulated annealing to achieve a small t-wise coverage.
We want to enhance existing approaches and make them available for the Clas-
sification Tree Method. CTE XL currently uses a non-search-based approach to
generate t-wise coverage. As there are many benchmarks available, our results
will be easily comparable, concerning both effectiveness and efficiency.

2. The search for optimal prioritized t-wise coverage: As introduced by [9], the
best weight coverage in early test cases is an important field of research. CTE
XL supports prioritized test case generation, although it uses a deterministic
approach. Very latest work by Segall et al. about the FoCuS Tool [11] also
targets this (and the previous) problem. However they too do not use a search-
based approach. We plan to use a multi objective algorithm to try and find
the smallest test set for t-wise coverage while at the same time prioritizing test
cases generation to maximise weight coverage in early test cases. Benchmarks
are available [9, 11], so we can compare our results with other work.

3. The search for optimal (as small as possible) test sequences via genera-
tion rules: There is not real previous work here, we are looking for something
like “parallel chinese postman” / “orthogonal chinese postman” or similar tech-
niques. Initial work [20] considers test sequence generation, but to the best of
our knowledge, no work supports parallel test sequence generation.

We want to use different search-based techniques to solve all three problems.
As there are existing algorithms for problems 1 and 2, we will be able to compare
our results with other approaches (both search-based and conventional). For the
third problem, we will need to identify a good set of benchmarks first.

4 Conclusions

In this paper, we identified three problems for future research. We aim to com-
pare our approach to existing techniques (both search-based and conventional)
for combinatorial test design. We will implement our algorithms in the Classi-
fication Tree Editor and perform an empirical study using a set of benchmark
systems to evaluate the proposed approach.

Acknowledgments This work is supported by EU grant ICT-257574 (FITTEST).

References

1. Shin Yoo and Mark Harman. Using hybrid algorithm for pareto effcient multi-
objective test suite minimisation. Journal of Systems Software, 83(4):689–701,
April 2010.

2. Mark Harman. Making the case for morto: Multi objective regression test opti-
mization. In The 1st International Workshop on Regression Testing (Regression
2011), Berlin, Germany, 2011.

3. Myra B. Cohen, Joshua Snyder, and Gregg Rothermel. Testing across configura-
tions: implications for combinatorial testing. SIGSOFT Softw. Eng. Notes, 31:1–9,
November 2006.



6 Peter M. Kruse, Kiran Lakhotia

4. Mats Grindal, Jeff Offutt, and Sten F. Andler. Combination testing strategies: a
survey. Softw. Test., Verif. Reliab., 15(3):167–199, 2005.

5. Rick Kuhn, Yu Lei, and Raghu Kacker. Practical combinatorial testing: Beyond
pairwise. IT Professional, 10(3):19–23, 2008.

6. Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Com-
put. Surv, 43(2):11, 2011.

7. Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of
highly-configurable systems in the presence of constraints. In Proc. of the 2007
International Symposium on Software Testing and Analysis, pages 129–139, New
York, NY, USA, 2007. ACM.

8. S. Elbaum, A.G. Malishevsky, and G. Rothermel. Test case prioritization: A family
of empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182,
2002.

9. Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing for pair-
wise coverage with seeding and constraints. Information & Software Technology,
48(10):960–970, 2006.

10. Charles J. Colbourn and Myra B. Cohen. A deterministic density algorithm for
pairwise interaction coverage. In Proc. of the IASTED International Conference
on Software Engineering, pages 242–252, 2004.

11. Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary decision diagrams
for combinatorial test design. In Proc. of the 2011 International Symposium on
Software Testing and Analysis, New York, NY, USA, 2011. ACM.

12. Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing.
Softw. Test., Verif. Reliab., 3(2):63–82, 1993.

13. T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and
generating fuctional tests. Communications of the ACM, 31(6):676–686, 1988.

14. Eckard Lehmann and Joachim Wegener. Test case design by means of the CTE XL.
Proc. of the 8th European International Conference on Software Testing, Analysis
and Review, December 2000.

15. Peter M. Kruse and Magdalena Luniak. Automated test case generation using
classification trees. ASQ Software Quality Professional, 13:4–12, December 2010.

16. Arturo Hernández Aguirre, Salvador Botello Rionda, Carlos A. Coello Coello, Gio-
vanni Lizárraga Lizárraga, and Efrén Mezura Montes. Handling Constraints using
Multiobjective Optimization Concepts. International Journal for Numerical Meth-
ods in Engineering, 59(15):1989–2017, April 2004.

17. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE-EC, 6:182–197, April 2002.

18. Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. In Evolutionary Methods for Design,
Optimization and Control with Applications to Industrial Problems, pages 95–100,
Athens, Greece, 2002.

19. Bernard. Density Estimation for Statistics and Data Analysis (Chapman &
Hall/CRC Monographs on Statistics & Applied Probability). Chapman and
Hall/CRC, 1 edition, April 1986.

20. D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Practical combinatorial testing.
Technical report, National Institute for Standards and Technology (NIST), October
2010.


