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Abstract—Bugs in concurrent software are difficult to iden-
tify and fix since they may only exhibit abnormal behaviour
on certain thread interleavings. We propose the use of genetic
programming to incrementally create a solution that fixes a
concurrency bug automatically. Bugs in a concurrent program
are fixed by iteratively mutating the program and evaluating
each mutation using a fitness function that compares the
mutated program with the previous version. We propose three
mutation operators that can fix concurrency bugs: synchro-
nize an unprotected shared resource, expand synchronization
regions to include unprotected source code, and interchange
nested lock objects.
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I. INTRODUCTION

Concurrency bugs are difficult and expensive to fix since
there are often many interleavings for a concurrent program.
We propose using a search-based technique, specifically
genetic programming, to apply and assess possible fixes for
common concurrency bugs. In particular we are interested
in fixing deadlocks and data races. A deadlock occurs in
“...a situation where two or more processes are unable
to proceed because each is waiting for one of the others
to do something...” [1]. A data race occurs when “...two
or more concurrent threads access a shared variable and
when at least one access is a write, and the threads use
no explicit mechanism to prevent the access from being
simultaneous” [1].

There has been a great deal of research in the area of
search-based software engineering [2]. Furthermore, the use
of genetic programming to aid in identifying a solution
that fixes a bug is not a novel idea [3]–[8]. Our proposed
approach adapts the original idea of automatically fixing se-
quential software using genetic programming to specifically
target concurrent software. Bugs in a concurrent program
are fixed by iteratively mutating the program and evaluating
each mutation using a fitness function that compares the
mutated program with the previous version. We have focused
on deadlock and data race bugs and have identified three
mutation operators that can insert potential fixes into a
concurrent program. We believe that this approach can be
very successful with respect to concurrency bugs since the
possible set of fixes is relatively small and the possible fixes
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Figure 1. Automatic Repair Process

are limited to source code locations associated with access to
shared data and the protection of shared data. In the previous
research using genetic programming to fix bugs in sequential
programs, the general approach has proved successful with
a larger set of possible actions and thus suggests that the
correction of concurrent software is also feasible.

To the best of our knowledge there has been no previous
work using genetic programming to patch bugs in concurrent
software, However, there has also been work that involves
the correction of concurrency bugs using self-healing [9].
The self-healing approach is applied dynamically and is fo-
cused on coping with a concurrency bug, while our approach
evolves the source code in order to correct the bug.

II. OUR AUTOMATIC REPAIR PROCESS

Our process expects a concurrent program P as input
(see Figure 1). A mutation operator is applied to P , which
results in a mutated program, P ′. We have identified three
mutation operators that can correct data race and deadlock
bugs. We have previously explored variations of these op-
erators in previous work on mutation testing of concurrent
software [10]. The first two operators specifically target data
race bugs while the third operator targets deadlock bugs:

1) Synchronize an unprotected shared resource. One
cause of a data race is that a shared resource is un-
protected. By synchronizing around a shared resource
data races can be fixed.
Program P :

. . .
o b j . w r i t e ( va r1 ) ;
. . .

Program P ′:

synchronized ( l o c k ){
o b j . w r i t e ( va r1 ) ;

}



2) Expand synchronization regions to include unprotected
source code. Data races can sometimes be caused if
the synchronization region does not fully encapsulate
access to the shared resources. Expanding the synchro-
nization region can also fix the data race.
Program P :

synchronized ( l o c k ){
o b j . w r i t e ( va r1 ) ;

}
o b j . w r i t e ( va r2 ) ;

Program P ′:

synchronized ( l o c k ){
o b j . w r i t e ( va r1 ) ;
o b j . w r i t e ( va r2 ) ;

}

3) Interchange nested lock objects. Common deadlocks
occur due to the ordering of lock acquisition. By
interchanging nested lock objects common deadlocks
can be fixed.
Program P :

synchronized ( l o c k 1 ){
synchronized ( l o c k 2 ){

o b j . w r i t e ( va r1 ) ;
}

}

Program P ′:

synchronized ( l o c k 2 ){
synchronized ( l o c k 1 ){

o b j . w r i t e ( va r1 ) ;
}

}

After the application of a mutation operator, the new
program, P ′, is then evaluated using our fitness function:

fitness(P ) =

n∑
i=0

interleavings without a bug

total # of interleavings tested

n = # of Test Cases

Our fitness function differs from the function used by
Weimer et al. in which the fitness is the weighted value
of the number of tests that pass in addition to a weighted
sum of the number of tests that fail. Since we are focused
on concurrent programs we have to provide coverage of the
interleaving space and need to run each test many times in
order to provide confidence that the test will not fail for
some interleaving. Therefore, we have chosen to calculate
the percent of interleavings that pass for each test case and
use the sum of these values as our measure of fitness. We
evaluate our fitness function by running all tests with P ′

a number of times using a concurrency testing tool (e.g.,
IBM’s ConTest [11]) to aid in exploring different thread
interleavings. If the fitness(P ′) > fitness(P ) then a given
mutation is kept, otherwise it is discarded.

We next check if the process can terminate or if more
mutations (i.e., bug fixes) are required. The terminating
conditions are: (1) a program P ′ has reached a user-defined
threshold of success meaning that enough tests succeed with
enough interleavings to provide confidence in the program
correctness, (2) the process has progressed a predefined
number of iterations without significant progress.

If no terminating condition is met then we need to select a
mutation operator for the next iteration of the algorithm. We
do not select the mutation operators randomly. Instead, we
select mutations based on the bugs present in the program.
For example, if most of the test cases failed due to a
deadlock then selecting the third mutation operator has the

best chance of fixing the deadlock otherwise we select one
of the other two operators.

For simplicity, our process was described with one mu-
tation per iteration. Ideally, we can mutate the program to
generate and evaluate multiple mutants per iteration in order
to find a solution more quickly.

III. CONCLUSION & FUTURE WORK

Genetic programming has been used to fix sequential
programs [3]–[5], [7], [8] and additional work has focused
on refinement of this approach [6]. Our research is an
adaptation of this previous work that targets concurrent
programs with deadlock and data race bugs. Currently,
we are in the process of implementing our work. After
the implementation is complete we plan to evaluate and
refine many aspects of our approach including: the mutation
operators, the fitness function, the termination threshold and
the heuristic selection of mutation operators.
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