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I. INTRODUCTION

Since the birth of Software Industry there is a special
interest in measuring the effort in terms of time and cost that
a task requires. Nowadays, since applications are essential for
Industry, the software developers need to measure different
kind of aspects: quality, cost, reliability, etc. Complexity is
another important aspect in which software engineers are
interested. But, what does we mean with “complexity” of a
software piece? Basili [1] defines complexity as a measure of
the resources used by a system while interacting with a piece
of software to perform a given task. If the interacting system
is a computer, then complexity is defined as the execution time
and storage required to perform the computation described by
the program. If the interacting system is a programmer then
complexity is defined as the difficulty of performing tasks such
as coding, debugging, testing or refactoring. In this abstract we
propose a new meaning for complexity: the difficulty of testing
a program.

Such a measure of complexity, which we call Testing
Complexity, could be useful to decide which is the best way of
generating a test suite for the piece of work. It could be useful,
for example, to decide the parameters of an evolutionary test
data generator [3] prior to its execution. Our new complexity
measure predicts the behaviour of an automatic test data
generator based on random testing [2]. The measure is based
on a Markov model of the program that is used for estimating
the probability of traversing the branches of the program. In
order to confirm the quality of our new complexity measure,
we performed an empirical study using a benchmark of 1800
test programs automatically generated.

II. TESTING COMPLEXITY

According to our measure a program A is more complex
than another one B if it is more difficult to test, that is, if
the number of test cases that a random test case generator has
to generate for obtaining full branch coverage in A is larger
than the number of test cases generated for B. For this reason
we want to define a complexity measure closely related to
the branch coverage obtained by a random test data generator.
The definition of this new measure lies on a Markov chain
that represents the program under test and, in addition, it is an
estimation of the number of test cases that must be generated
to obtain full branch coverage of the program.

A Markov chain is a discrete random process with the
property that the next state depends only on the current state.
A discrete random process is a system which is in a certain
state at each step, with the state changing randomly between
steps. The conditional probability distribution of the next step

depends only on the current state of the system, and not on
the state of the system at previous steps:

P(Xn+1|Xn7anla ...,Xl,) = P(XnJrl‘Xn) (1)

The previous probabilities are called transition probabilities.
The set of all states and the transition probabilities completely
characterize a Markov chain. Since the system changes ran-
domly, it is generally impossible to predict the exact state of
the system in the future. However, the statistical properties of
the system’s future can be predicted. In particular, it is possible
to compute the frequency of appearance of the states in the
Markov chain.

In our case the states of the Markov chain are the basic
blocks of the program and the transition probabilities are the
probabilities of jumping from one basic block to another one
(traversing a branch). The Markov chain is thus statically built
from a program computing for each basic block the probability
of jumping to the next basic blocks (details below). Once
we have built the matrix of transition probabilities, we add
a fictional link between the last state and the first one. This is
necessary to accomplish the requirements of a Markov chain
(we need a cycle).

The transition probability of a branch is computed after the
decision of the branch. We recursively define this probability
as follows:

P(clssc2) = p(el) = p(e2) 2)
P(cl11¢2) = p(cl) + p(c2) — p(cl) * p(c2)  (3)
P(—cl) =1— P(cl) 4)

where cl and c2 are conditions.

In order to completely specify the transition probabilities we
need to define their value in the base case of the recursion, that
is, for atomic conditions. We establish a 1/2 probability when
the operands are ordering relational operators (<, <,>,>)
because if one generates two random numbers, the resulting
probability of the condition to be true or false is 1/2. The
actual probability in a random situation is not always 1/2, but
it is reasonable to chose this value because, on average, it is the
value with less distance to the actual probability. In the case
of equalities and inequalities the probabilities are p and 1 —p,
respectively, where p is a parameter of the measure and its
value should be adjusted based on the experience. Satisfying
an equality is, in general, a hard task and, thus, p should
be close to zero. This parameter could be highly dependent
on the data dependencies of the program. The quality of the
complexity measure depends on a good election for p. We
delay to future work the thorough analysis of this parameter.



Once we build the Markov chain associated to the program
we are analyzing, we can compute the stationary probability
of the basic blocks (the frequency of appearance of the
basic blocks in a program execution) and the probability of
traversing any branch in one execution of a program. We
define the Testing Complexity as the average of the branch
probabilities with a value lower or equal to 1/2. If a program
has a low value of testing complexity then a random test case
generator requires a large number of test cases to obtain full
branch coverage. Equally, a low value of testing complexity
implies low branch coverage for a random test case generator
generating a fixed number of test cases. The testing complexity
is always between 0 and 1/2.

III. ANALYSIS OF THE TESTING COMPLEXITY

In order to check if the testing complexity is a good
estimation of the difficulty to test a program we perform an
empirical study using the following methodology. First, we
generated 1800 programs in an automatic way. Second, we
computed the testing complexity of all the programs. Third,
we used a random test case generator (RND) to find a test case
suite for each program. We perform 30 independent runs of
the generator, which generates 150,000 test cases in each run.
Finally, we computed the Spearman’s correlation coefficient
p, between the testing complexity and the average branch
coverage obtained by RND for each program.

In the benchmark of programs the correlation between the
testing complexity and the branch coverage is 0.732. This
value is higher (in absolute value) than the one between branch
coverage and the nesting degree (p = —0.589), which is
the most correlated static measure as far as we know. This
result confirms that our complexity measure is better than the
existing measures to estimate the difficulty to test a program.
In Figure 1 we show the average coverage obtained by RND
against the testing complexity for all the programs. In the
figure the correlation can visually be appreciated.
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Fig. 1. RND average coverage against the testing complexity.

The Markov model of the program can be used not only
to define the testing complexity, but to give an estimation
of how many test cases RND has to generate to achieve a
concrete branch coverage. As we explained in Section II, using

the Markov model it is possible to compute the probability
of a branch to be traversed during one single execution of
the program. The inverse of this probability is an estimation
of the number of test cases required by RND to cover the
branch. If we compute these estimations for all the branches
of the program and we sort them in ascending order the plot
of the rank of the values against the value itself is a curve
that represents the branch coverage against the number of
generated test cases. This curve can also be statically computed
for each program.

In Figure 2 we show this plot for a particular program
together with the empirical plot obtained using the average
coverage of the 30 independent executions of RND for that
program. The resulting curves show that our theoretical model
and the empirical data are very similar. The theoretical model
is more optimistic because it does not take into account data
dependencies. At the first steps of the algorithm, the empirical
behaviour is better than the theoretical model, but when a high
coverage is obtained (close to 90%), and less decisions have to
be covered, the behaviour of the RND is worse than expected.
One explanation for this behavior could be the presence of
data dependencies in the program, which are not considered
in the theoretical approach.
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Fig. 2. Coverage against the number of test cases generated by RND and
the theoretical prediction.
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