Using computational search to generate 2-way covering array
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Software and its running environments are becom-
ing more and more complex, and there are more
and more factors that can influence the behavior of
the software. For a software under test SUT, sup-
pose there are n factors which may affect its exe-
cution, each factor(parameter) ¢; has a; (1 < i <
n)values, and the value set is denoted as V;, we need
ay X as X ---a, test cases if we do exhaustive test-
ing. When n and a; are large, test cost will increase
quickly. From observation, we need not run all the
test cases, as sometimes there is only a small number
of parameters which can trigger failure. So we just
need to design a test suite to cover all the combina-
tions of some parameters. Covering array CA is a
m X n matrix, and each row represents a test case for
SUT, with all the values in the ith column from V;,
the value set of parameter i. If for every 7 parame-
ters of SUT: ¢;,,¢iy, -, i, , each value combination
in V;; xV4,,---,V;_ can be found in some row of CA,
CA is called 7-way covering array. When 7 is not
fixed in CA, it is called variable strength covering ar-
ray(VCA). When 7 = 2, it is 2-way covering array.
In this paper we focus on generating 2-way covering
array.

Much work has been done to generate cov-
ering array. Computational search methods,
including Heuristic search techniques (Hill Climb-
ing(HC), Great Flood(GF), Tabu Search(TS),
Simulated Annealing(SA)) and Al-based search
techniques(Genetic Algorithm (GA), Ant Colony
Algorithm(ACA)), have been applied to 7-way

covering array and VCA generation. These meth-
ods usually start from a pre-existing test set and
then apply a series of transformations to the test
set until it covers all the combinations [1]. [2]
used GA-based technique that identifies a set of
test configurations that are expected to maximize
pairwise coverage with a predefined number of test
cases. [3] augmented the one-test-at-a-time greedy
algorithm with a heuristic search. [4] reported using
the computational method of simulated annealing to
generate 3-way covering array and variable strength
array. [5] also used GA and ACA to generate 3-way
covering array. Computational search techniques
can often produce a smaller test set than those from
the greedy algorithm, but typically require a longer
computation. In the following we give a generic
computational search algorithm for covering array
generation.

Framework of computational search algorithm
Let S be the set of all the T-way combinations that
should be covered according to the model of SUT. Let
Seeds be the set of test cases assigned by testers,
remove all the T-way combinations covered by the
test cases in Seeds from S.
For each test case t, fitness(t)=the number of uncov-
ered T-way combinations.
While (S#£ ()

Generate a set of test cases randomly;

Evolve the test set with any search techniques,

such as SA, HC, PSO, ACA, GA, etc.



Choose the best ¢ with the highest fitness.
Remove all the 7-way combinations covered
by the test cases t from S.

End while.

We reimplemented GA, PSO (Particle Swarm
Optimization), ACA, SA, HC and developed a
random algorithm (RA) for 2-way covering array
generation. Figure 1 gives the size of test suite gen-
erated by these different search techniques. In the
first column, v™ means that SUT has n parameters
and each parameter has v values.

Random Algorithm
Input n: the number of parameters;
a;: the number of values of parameter i(1 <i <mn)
Output: 2-way covering array
Let S be the set of all pairs that need to be covered;
while (S # 0)
bestf = 0; //fitness of the current best test case;
bestt: the initial best test case;
for j =1 to 1000(or 10000 ,can be adjusted)
Randomly generate a test case t;
fitness(t) =number of uncovered pairs in ¢;
If fitness(t) = n(n—1)/2 output ¢ and delete
all the pairs covered by ¢ from S and break
Else if (bestf < fitness(t)) bestt=t and
bestf =fitness(t);
End for;
Output bestt and delete all the pairs covered
by t from S;
End while;

The five search techniques all do well in the 2-way
covering array generation, but none of them can out-
perform others. The random method is also not bet-
ter than any of these five algorithms, although some-
times it can yield a smaller size covering array faster.
The random method is easier and quicker.

For future work we will explore more search tech-
niques,such as TS ,GF.etc, to generate covering ar-
ray,including 7-way covering array(r > 2) and VCA,
do more experiments to compare their performances
and to build a smaller covering array.

v | GA | PSO | ACA | SA | HC | RA

RE 10 13 14 9 10 | 10
313 20 22 21 20 | 19 | 20
2100 116 16 18 16 | 16 | 15
10%° | 195 | 301 265 | 279 | 178 | 295
410 29 31 32 32 | 31 | 31
420 | 37 45 44 44 | 44 | 45
4°0 145 66 64 62 | 62 | 64
610 | 63 70 72 70 | 69 | 72
620 76 101 97 101 | 100 | 101
820 [ 128 | 183 174 | 178 | 178 | 186
810 1161 | 256 233 | 252 | 242 | 249
1030 | 225 | 359 322 | 337 | 338 | 350

Figure 1: Comparison of test suite size generated by
different search techniques
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