Using computational search to generate 2-way covering array

Changhai Nie and Baowen Xu
State Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210093, China
Hareton Leung
Hong Kong Polytechnic University, China

April 28, 2009

Software and its running environments are becom-
ing more and more complex, and there are more
and more factors that can influence the behavior of
the software. For a software under test SUT, sup-
pose there are n factors which may affect its exe-
cution, each factor(parameter) ¢; has a; (1 < i <
n)values, and the value set is denoted as V;, we need
ay X as X ---a, test cases if we do exhaustive test-
ing. When n and a; are large, test cost will increase
quickly. From observation, we need not run all the
test cases, as sometimes there is only a small number
of parameters which can trigger failure. So we just
need to design a test suite to cover all the combina-
tions of some parameters. Covering array CA is a
m X n matrix, and each row represents a test case for
SUT, with all the values in the ith column from V;,
the value set of parameter i. If for every 7 parame-
ters of SUT: ¢;,,¢iy, -, i, , each value combination
in V;; xV4,,---,V;_ can be found in some row of CA,
CA is called 7-way covering array. When 7 is not
fixed in CA, it is called variable strength covering ar-
ray(VCA). When 7 = 2, it is 2-way covering array.
In this paper we focus on generating 2-way covering
array.

Much work has been done to generate cov-
ering array. Computational search methods,
including Heuristic search techniques (Hill Climb-
ing(HC), Great Flood(GF), Tabu Search(TS),
Simulated Annealing(SA)) and Al-based search
techniques(Genetic Algorithm (GA), Ant Colony
Algorithm(ACA)), have been applied to 7-way

covering array and VCA generation. These meth-
ods usually start from a pre-existing test set and
then apply a series of transformations to the test
set until it covers all the combinations [1]. [2]
used GA-based technique that identifies a set of
test configurations that are expected to maximize
pairwise coverage with a predefined number of test
cases. [3] augmented the one-test-at-a-time greedy
algorithm with a heuristic search. [4] reported using
the computational method of simulated annealing to
generate 3-way covering array and variable strength
array. [5] also used GA and ACA to generate 3-way
covering array. Computational search techniques
can often produce a smaller test set than those from
the greedy algorithm, but typically require a longer
computation. In the following we give a generic
computational search algorithm for covering array
generation.

Framework of computational search algorithm
Let S be the set of all the T-way combinations that
should be covered according to the model of SUT. Let
Seeds be the set of test cases assigned by testers,
remove all the T-way combinations covered by the
test cases in Seeds from S.
For each test case t, fitness(t)=the number of uncov-
ered T-way combinations.
While (S#£ ()

Generate a set of test cases randomly;

Evolve the test set with any search techniques,

such as SA, HC, PSO, ACA, GA, etc.



Choose the best ¢ with the highest fitness.
Remove all the 7-way combinations covered
by the test cases t from S.

End while.

We reimplemented GA, PSO (Particle Swarm
Optimization), ACA, SA, HC and developed a
random algorithm (RA) for 2-way covering array
generation. Figure 1 gives the size of test suite gen-
erated by these different search techniques. In the
first column, v™ means that SUT has n parameters
and each parameter has v values.

Random Algorithm
Input n: the number of parameters;
a;: the number of values of parameter i(1 <i <mn)
Output: 2-way covering array
Let S be the set of all pairs that need to be covered;
while (S # 0)
bestf = 0; //fitness of the current best test case;
bestt: the initial best test case;
for j =1 to 1000(or 10000 ,can be adjusted)
Randomly generate a test case t;
fitness(t) =number of uncovered pairs in ¢;
If fitness(t) = n(n—1)/2 output ¢ and delete
all the pairs covered by ¢ from S and break
Else if (bestf < fitness(t)) bestt=t and
bestf =fitness(t);
End for;
Output bestt and delete all the pairs covered
by t from S;
End while;

The five search techniques all do well in the 2-way
covering array generation, but none of them can out-
perform others. The random method is also not bet-
ter than any of these five algorithms, although some-
times it can yield a smaller size covering array faster.
The random method is easier and quicker.

For future work we will explore more search tech-
niques,such as TS ,GF.etc, to generate covering ar-
ray,including 7-way covering array(r > 2) and VCA,
do more experiments to compare their performances
and to build a smaller covering array.

v | GA | PSO | ACA | SA | HC | RA

RE 10 13 14 9 10 | 10
313 20 22 21 20 | 19 | 20
2100 116 16 18 16 | 16 | 15
10%° | 195 | 301 265 | 279 | 178 | 295
410 29 31 32 32 | 31 | 31
420 | 37 45 44 44 | 44 | 45
4°0 145 66 64 62 | 62 | 64
610 | 63 70 72 70 | 69 | 72
620 76 101 97 101 | 100 | 101
820 [ 128 | 183 174 | 178 | 178 | 186
810 1161 | 256 233 | 252 | 242 | 249
1030 | 225 | 359 322 | 337 | 338 | 350

Figure 1: Comparison of test suite size generated by
different search techniques

References

[1] Harman, M.. The current state and future of
search based software engineering. In Future of
Software Engineering, FOSE 07, 342-357.

[2] Ghazi, S.A. Ahmed, M.. Pair-wise test cover-
age using genetic algorithms. In Proc. the 2003
Congress on Evolutionary Computation. IEEE
Computer Society, Washington, DC, USA, 1420-
1424.

[3] Bryce, R. C. and Colbourn, C. J.. One-test-
at-a-time heuristic search for interaction test
suites. In Proc. the 9th annual conference on Ge-
netic and evolutionary computation. ACM, New
York,USA, 1082-1089.

[4] Cohen, M. B., Gibbons, P. B., Mugridge, W. B.,
and Colbourn, C. J.. Constructing test suites
for interaction testing. In Proc. the 25th In-
ternational Conference on Software Engineering.

Washington, DC, USA, 38-48.

[5] Shiba, T., Tsuchiya, T., and Kikuno, T.. Using
artificial life techniques to generate test cases for
combinatorial testing. In Proc. the 28th Annual

Inter- national Computer Software and Applica-
tions Conference. Washington, DC, USA, 72-77.



