
Guiding the Search-Based Testing via Dominances vs. Control Dependencies

Ahmed S. Ghiduk
Senior Member of IACSIT,

Faculty of Science, Beni-Suef University, Egypt &
College of Computers & Information Systems, Taif University, Saudi Arabia

asaghiduk@yahoo.com

Abstract

The representation of the problem and the
definition of the fitness function are the two key
ingredients for the application of search-based
optimization to software engineering problems.
Therefore, a well-defined fitness function is essential to
the effectiveness of search-based testing (SBT). Several
search based test-data generation techniques utilized
the control dependencies (CD) for guiding the search
to find tests. Ghiduk et al. presented a search-based
technique that utilizes the dominances to direct the
search to generate test data. In this paper, we
illustrate the efficiency of dominances in the control-
flow graph (CFG) in guiding the SBT. The paper gives
some problems for SBT which is guided by the CD.
The paper introduces a general form for a fitness
function in terms of dominances nodes and
postdominances. This function will improve the
efficiency of the search consequently; the SBT
overcomes the CD problems.

1. Introduction

Search-based optimization techniques (e.g.,
simulated annealing, genetic algorithms, ant colony
and particle swarm) have been applied to a number of
software engineering activities such as test-data
generation [1]. Genetic algorithms have been the most
widely employed search technique in SBT.

However, no matter what search technique is
employed, it is the fitness function that differentiates a
good solution from a poor one, thereby guiding the
search. Thus, a well-designed fitness function is
essential to the efficiency of SBT. A lot of search
based test-data generation techniques guide the search
using the CD to find the test data for satisfying a
number of control-flow and data-flow testing criteria.
McMinn [4] surveyed the previous work undertaken in
this area.

For guiding the SBT, Pargas et al. [2] used the
control dependence graph of the tested object. The
fitness function is the number of predicates on the
executed path that is common with the predicates on a
control-dependence path of the target.

To direct the search, Tracey [5] used the formula:

dist
dependent
executed

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

where dependent is the number of the control
dependence nodes for the target, executed is the
number of successfully executed control dependent
nodes, and dist is the branch distance calculation
preformed at the branching node.

Wegener et al. [6] modified the Tracey's function
by mapping dist into the range [0, 1] (called m_dist).
The fitness function is zero if the target structure is
executed, otherwise, the fitness value is:

approximation level + m_dist,
where approximation level = (dependent-executed - 1).

Wang et al. [7] presented a flattened CFG, a
flattened control-dependence graph and a fitness
calculation approach for the switch-case structure. The
formula:

Fitness = approximation level + normalize(dist);
Where normalize(dist) = 1 - 1.001-dist is used to find
the fitness value and dist = |expr-C|+1, where expr is
the value of the expression after the switch keyword,
and C is the constant for the desired case branch.
When the execution diverges away at other branching
node, dist is calculated by Tracey's method [5].

Ghiduk et al. [3] presented genetic algorithms based
technique, which generates test data to satisfy a wide
range of data-flow criteria. The technique applies the
concepts of dominance relations between nodes only to
define a multi-objective fitness function.

McMinn [4] has discussed the problems of the
control-dependencies based fitness functions.

This paper gives some problems of the SBT which
is guided by the CD. The paper introduces a general
form for a fitness function defined by dominances and
postdominances. This function will improve the
efficiency of the SBT consequently; SBT overcomes
the CD problems.

The rest of the paper is organized as follow: section
2 gives some basic concepts; section 3 gives two of the
problems of using CD in SBT and the key ingredients
to overcome these problems. Section 4 gives the
conclusions and future work.

2. Basic Concepts

This section gives some concepts and definitions.

2.1. The Control-Flow Graph (CFG)

A graph G = (V, E) with two distinguished nodes n0

(entry) and nk (exit), which consists of a set V of nodes,
where each node represents a statement, and a set E of
directed edges, where a directed edge e = (n, m) is an
ordered pair of two adjacent nodes, called tail and
head of e, respectively is called control-flow graph
(CFG).

2.2 Dominances (Dom)

Let G = (V, E) be a CFG with two distinguished

nodes n0 and nk, the unique entry and exit nodes
respectively. A node n dominates a node m if every
path P from the entry node n0 to m contains n [8].

The dominator tree DT(G) = (V, E) is a CFG in
which one distinguished node n0, called the root, is the
head of no edges; every node n except the root n0 is a
head of just one edge and there exists a (unique)
dominance path from the root n0 to each node n.

A node m postdominates by node n iff m ≠ n and
every path from n to the exit contains m.

2.3 Control Dependencies (CD)

For nodes n and m in a CFG, m is control dependent

on n iff (1) there exists a path P from n to m with all
node x in P (excluding n and m) postdominated by m
(2) n is not postdominated by m. Where, nodes
represent statements, and edges represent the control
dependencies between statements.

3. Dominance versus Control Dependencies

This section gives some problems of using the CD
to guide the SBT. In addition, we present a
methodology to overcome these problems.

3.1 The problems of the CD

• Determining the CD path for statements following

the unstructured transfers of control, such as goto,
continue, and break [2, 4] and do-while structure
[9]. In these cases there is more than one path.

• Finding the approximation level. For example, in
the case of selection structure nested within
repetition structure (e.g., if structure within for
structure) [4] and in the switch-case structure [4, 7].

3.2 Overcoming the CD problems

The key ingredients for using the dominances in the
control-flow graph to define the fitness function are:
• From the definition of the dominance, there is a

unique path between any two dominated nodes.

Therefore, using dominance will solve the problem
with unstructured transfers and do-while structure.

• From the definition of postdominance, there is a
unique path between any two postdominated nodes.
Thus, using postdominance will overcome the
problem of finding the approximation level.

From the above key ingredients, the general form of
the fitness function is:

Fitness = fit_value + approximation_value;
where fit_value is a function in dominance nodes, and
approximation_value is a function in postdominance
nodes. Currently, we work to define this function.

4. Conclusions and future work

This paper gave some problems of using the control
dependencies to guide the SBT. In addition, the paper
presented a general form for a function for guiding the
SBT. Currently, we work to define this function and
investigate its ability to overcome the problems of CD.

5. References

[1] M. Harman, "The Current State and Future of Search
Based Software Engineering," Proc. of the International
Conference on Future of Software Engineering (FOSE 07),
May 2007, pp. 342-357.
[2] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test Data
Generation Using Genetic Algorithms” Journal of Software
Testing,Verifications and Reliability,vol.9,pp.263-282, 1999.
[3] A. S. Ghiduk, M. J. Harrold, M. R. Girgis, “Using
Genetic Algorithms to Aid Test-Data Generation for Data
Flow Coverage,” Proc. of 14th Asia-Pacific Software
Engineering Conference (APSEC 07), Dec. 2007, pp. 41-48.
[4] P. McMinn, "Search-Based Software Test Data
Generation: A Survey," Journal of Software Testing
Verification and Reliability, vol. 14, no. 2, June 2004, pp.
105-156.
[5] N. Tracey, "A search-based automated test data
generation framework for safety critical software," Ph. D.
thesis, University of York, 2000.
[6] J. Wegener, K. Buhr, and H. Pohlheim, "Automatic test
data generation for structural testing of embedded software
systems by evolutionary testing" In Proc. of the 2002
Genetic and Evolutionary Computation Conference (GECCO
’02), 2002, pp 1233–1240.
[7] Y. Wang, Z. Bai, M. Zhang, W. Du, Y. Qin, and X. Liu,
"Fitness calculation approach for the switch-case construct in
evolutionary testing." In Proc. of the 10th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’08),
2008, pp 1767– 1774.
[8] T. Lengauer and R. E. Trajan, "A fast algorithm for
finding dominators in a flowgraph." ACM Transactions on
programming Languages and Systems, vol. 1, 1979, pp.121-
141.
[9] T. Ball, and S. Horwitz, "Constructing control flow from
control dependence," TR-92-1091, University of Wisconsin-
Madison, 1992. http://www.cs.wisc.edu/wpis/papers/tr92-1091.ps.

	1. Introduction
	2. Basic Concepts
	2.1. The Control-Flow Graph (CFG)
	2.2 Dominances (Dom)
	3. Dominance versus Control Dependencies
	3.1 The problems of the CD
	3.2 Overcoming the CD problems

	4. Conclusions and future work
	5. References

